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Abstract

Our group within the University of Amsterdam participated in the large-scale visual
concept detection task of ImageCLEF 2009. Our experiments focus on increasing the
robustness of the individual concept detectors based on the bag-of-words approach,
and less on the hierarchical nature of the concept set used. To increase the robustness
of individual concept detectors, our experiments emphasize in particular the role of
visual sampling, the value of color invariant features, the influence of codebook con-
struction, and the effectiveness of kernel-based learning parameters. The participation
in ImageCLEF 2009 has been successful, resulting in the top ranking for the large-scale
visual concept detection task in terms of both EER and AUC. For 40 out of 53 indi-
vidual concepts, we obtain the best performance of all submissions to this task. For
the hierarchical evaluation, which considers the whole hierarchy of concepts instead
of single detectors, using the concept likelihoods estimated by our detectors directly
works better than scaling these likelihoods based on the class priors.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.4 Systems
and Software; I.4.7 [Image Processing and Computer Vision]: Feature Measurement

General Terms

Performance, Measurement, Experimentation

Keywords

Color, Invariance, Concept Detection, Object and Scene Recognition, Bag-of-Words, Photo An-
notation, Spatial Pyramid

1 Introduction

Robust image retrieval is highly relevant in a world that is adapting swiftly to visual communi-
cation. Online services like Flickr show that the sheer number of photos available online is too
much for any human to grasp. Many people place their entire photo album on the internet. Most
commercial image search engines provide access to photos based on text or other metadata, as
this is still the easiest way for a user to describe an information need. The indices of these search
engines are based on the filename, associated text or (social) tagging. This results in disappoint-
ing retrieval performance when the visual content is not mentioned, or properly reflected in the
associated text. In addition, when the photos originate from non-English speaking countries, such
as China, or the Netherlands, querying the content becomes much harder.
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Figure 1: University of Amsterdam’s ImageCLEF 2009 concept detection scheme, using the con-
ventions shown on the right. The scheme serves as the blueprint for the organization of Section
2.

To cater for robust image retrieval, the promising solutions from literature are in majority
concept-based [16], where detectors are related to objects, like a telephone, scenes, like a kitchen,
and people, like big group. Any one of those brings an understanding of the current content. The
elements in such a lexicon offer users a semantic entry by allowing them to query on presence or
absence of visual content elements.

The Large-Scale Visual Concept Detection Task [12] evaluates 53 visual concept detectors. The
concepts used are from the personal photo album domain: beach holidays, snow, plants, indoor,
mountains, still-life, small group of people, portrait. For more information on the dataset and
concepts used, see the overview paper [12].

Based on our previous work on concept detection [19, 15], we have focused on improving the
robustness of the visual features used in our concept detectors. Systems with the best performance
in image retrieval [11, 19] and video retrieval [22, 15] use combinations of multiple features for
concept detection. The basis for these combinations is formed by good color features and multiple
point sampling strategies.

This paper is organized as follows. Section 2 defines our concept detection system. Section 3
details our experiments and results. Finally, in section 4, conclusions are drawn.

2 Concept Detection System

We perceive concept detection as a combined computer vision and machine learning problem.
Given an n-dimensional visual feature vector xi, the aim is to obtain a measure, which indicates
whether semantic concept ωj is present in photo i. We may choose from various visual feature
extraction methods to obtain xi, and from a variety of supervised machine learning approaches to
learn the relation between ωj and xi. The supervised machine learning process is composed of two
phases: training and testing. In the first phase, the optimal configuration of features is learned
from the training data. In the second phase, the classifier assigns a probability p(ωj |xi) to each
input feature vector for each semantic concept.

2.1 Sampling Strategy

The visual appearance of a concept has a strong dependency on the viewpoint under which it is
recorded. Salient point methods [17] introduce robustness against viewpoint changes by selecting
points, which can be recovered under different perspectives. Another solution is to simply use
many points, which is achieved by dense sampling. We summarize our sampling approach in
Figure 2.

Harris-Laplace point detector In order to determine salient points, Harris-Laplace relies on
a Harris corner detector. By applying it on multiple scales, it is possible to select the characteristic
scale of a local corner using the Laplacian operator [17]. Hence, for each corner the Harris-Laplace
detector selects a scale-invariant point if the local image structure under a Laplacian operator has
a stable maximum.
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Figure 2: General scheme for sampling of image regions, including Harris-Laplace and dense point
selection, and a spatial pyramid. Detail of Figure 1, using the same conventions.

Dense point detector For concepts with many homogenous areas, like scenes, corners are
often rare. Hence, for these concepts relying on a Harris-Laplace detector can be suboptimal.
To counter the shortcoming of Harris-Laplace, random and dense sampling strategies have been
proposed [4, 6]. We employ dense sampling, which samples an image grid in a uniform fashion
using a fixed pixel interval between regions. In our experiments we use an interval distance of 6
pixels and sample at multiple scales.

Spatial pyramid weighting Both Harris-Laplace and dense sampling give an equal weight
to all keypoints, irrespective of their spatial location in the image frame. In order to overcome
this limitation, Lazebnik et al. [7] suggest to repeatedly sample fixed subregions of an image, e.g.
1x1, 2x2, 4x4, etc., and to aggregate the different resolutions into a so called spatial pyramid,
which allows for region-specific weighting. Since every region is an image in itself, the spatial
pyramid can be used in combination with both the Harris-Laplace point detector and dense point
sampling [18]. Reported results using concept detection experiments are not yet conclusive in the
ideal spatial pyramid configuration, some claim 2x2 is sufficient [7], others suggest to include 1x3
also [11]. We use a spatial pyramid of 1x1, 2x2, and 1x3 regions in our experiments.

2.2 Visual Feature Extraction

In the previous section, we addressed the dependency of the visual appearance of semantic con-
cepts on the viewpoint under which they are recorded. However, the lighting conditions during
photography also play an important role. We [19] analyzed the properties of color features under
classes of illumination changes within the diagonal model of illumination change, and specifically
for data sets consisting of Flickr images. In ImageCLEF, the images used also originate from
Flickr. Here we summarize the main findings. We present an overview of the visual features used
in Figure 3.

The features are computed around salient points obtained from the Harris-Laplace detector
and dense sampling.

SIFT The SIFT feature proposed by Lowe [10] describes the local shape of a region using edge
orientation histograms. The gradient of an image is shift-invariant: taking the derivative cancels
out offsets [19]. Under light intensity changes, i.e. a scaling of the intensity channel, the gradient
direction and the relative gradient magnitude remain the same. Because the SIFT feature is
normalized, the gradient magnitude changes have no effect on the final feature. To compute SIFT
features, we use the version described by Lowe [10].

OpponentSIFT OpponentSIFT describes all the channels in the opponent color space using
SIFT features. The information in the O3 channel is equal to the intensity information, while the
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Figure 3: General scheme of the visual feature extraction methods used in our ImageCLEF 2009
experiments.

other channels describe the color information in the image. The feature normalization, as effective
in SIFT, cancels out any local changes in light intensity.

C-SIFT The C-SIFT feature uses the C invariant [5], which can be intuitively seen as the
gradient (or derivative) for the normalized opponent color space O1/I and O2/I. The I intensity
channel remains unchanged. C-SIFT is known to be scale-invariant with respect to light intensity.
See [1, 19] for detailed evaluation.

RGB-SIFT For the RGB-SIFT, the SIFT feature is computed for each RGB channel inde-
pendently. Due to the normalizations performed within SIFT, it is equal to transformed color
SIFT [19]. The feature is scale-invariant, shift-invariant, and invariant to light color changes and
shift.

2.3 Codebook Transform

To avoid using all visual features in an image, while incorporating translation invariance and
a robustness to noise, we follow the well known codebook approach, see e.g. [8, 6, 23, 20, 19].
First, we assign visual features to discrete codewords predefined in a codebook. Then, we use the
frequency distribution of the codewords as a compact feature vector representing an image frame.
Two important variables in the codebook representation are codebook construction and codeword
assignment. An extensive comparison of codebook representation variables is presented by Van
Gemert et al. in [20]. Here we detail codebook construction and codeword assignment using hard
and soft variants, following the scheme in Figure 4.

Codebook construction We employ k-means clustering. K-means partitions the visual feature
space by minimizing the variance between a predefined number of k clusters. The advantage of
the k-means algorithm is its simplicity. A disadvantage of k-means is its emphasis on clusters of
dense areas in feature space. Hence, k-means does not spread clusters evenly throughout feature
space. We fix the visual codebook to a maximum of 4000 codewords.

Hard-assignment Given a codebook of codewords, obtained from clustering, the traditional
codebook approach describes each feature by the single best representative codeword in the code-
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Figure 4: General scheme for transforming visual features into a codebook, where we distinguish
between codebook construction using clustering and codeword assignment using soft and hard
variants. We combine various codeword frequency distributions into a codebook library. This
then forms the input to an SVM classifier.

book, i.e. hard-assignment. Basically, an image is represented by a histogram of codeword fre-
quencies describing the probability density over codewords.

Soft-assignment In a recent paper [20], it is shown that the traditional codebook approach may
be improved by using soft-assignment through kernel codebooks. A kernel codebook uses a kernel
function to smooth the hard-assignment of image features to codewords. Out of the various forms
of kernel-codebooks, we selected codeword uncertainty based on its empirical performance [20].

Codebook library Each of the possible sampling methods from Section 2.1 coupled with each
visual feature extraction method from Section 2.2, a clustering method, and an assignment ap-
proach results in a separate visual codebook. An example is a codebook based on dense sampling
of RGB-SIFT features in combination with hard-assignment. We collect all possible codebook
combinations in a visual codebook library. Naturally, the codebooks can be combined using var-
ious configurations. For simplicity, we employ equal weights in our experiments when combining
codebooks to form a library.

2.4 Kernel-based Learning

Learning robust concept detectors from large-scale visual codebooks is typically achieved by kernel-
based learning methods. From all kernel-based learning approaches on offer, the support vector
machine is commonly regarded as a solid choice. An overview is given together with the codebook
transformations in Figure 4.

Support vector machine We use the support vector machine framework [21] for supervised
learning of concepts. Here we use the LIBSVM implementation [2] with probabilistic output [13, 9].
The parameter of the support vector machine we optimize is C. In order to handle imbalance in
the number of positive versus negative training examples, we fix the weights of the positive and
negative class by estimation from the class priors on training data. It was shown by Zhang et al.
[23] that in a codebook-approach to concept detection the earth movers distance and χ2 kernel
are to be preferred. We employ the χ2 kernel, as it is less expensive in terms of computation.



3 Concept Detection Experiments

3.1 Submitted Runs

We have submitted five different runs. All runs use both Harris-Laplace and dense sampling with
the SVM classifier. We do not use the EXIF metadata provided for the photos. Our system has
been developed based on the PASCAL VOC [3] and TRECVID Sound and Vision datasets [14].
For ImageCLEF, we have learned new concept models based on the provided annotations. The
only parameter specifically optimized for this dataset is the slack parameter C of the SVM. All
other parameter settings are the same as in our PASCAL VOC 2008 system [19]. Extracting
features, training models and applying those models on the test set was finished within 72 hours.

• OpponentSIFT: single color descriptor with hard assignment.

• 2-SIFT: two color descriptors (OpponentSIFT and SIFT) with hard assignment.

• 4-SIFT: four color descriptors (OpponentSIFT, C-SIFT, RGB-SIFT and SIFT) with hard
assignment.

• Rescaled 4-SIFT: the same ordering of images as 4-SIFT, but with all concept detector
outputs linearly scaled so the number of images with a score > 0.5 is equal to the concept
prior probability in the training set.

• Soft 4-SIFT: four color descriptors (OpponentSIFT, C-SIFT, RGB-SIFT and SIFT) with
soft assignment. The soft assignment parameters have been taken from our PASCAL VOC
2008 system [19].

3.2 Evaluation Per Concept

In table 1, the overall scores for the evaluation of concept detectors are shown. As for the evaluation
of single detectors only the ranking of the images within a single concept matters, the rescaled
version of 4-SIFT achieves the exact same performance as 4-SIFT. We note that the 4-SIFT run
with hard assignment achieves not only the highest performance amongst our runs, but also over
all other runs submitted to the Large-Scale Visual Concept Detection task.

In table 2, the Area Under the Curve scores have been split out per concept. We observe
that the three aesthetic concepts have the lowest scores. This comes as no surprise, because these
concepts are highly subjective: even human annotators only agree around 80% of the time with
each other. For virtually all concepts besides the aesthetic ones, either the Soft 4-SIFT or the
Hard 4-SIFT is the best run. This confirms our beliefs that these (color) descriptors are not
redundant when used in combinations. Therefore, we recommend the use of these 4 descriptors
instead of 1 or 2. The difference in overall performance between the Soft 4-SIFT or the Hard 4-
SIFT run is quite small. Because the soft codebook assignment smoothing parameter was directly
taken from a different dataset, we expect that the soft assignment run could be improved if the
soft assignment parameter was selected with cross-validation on the training set. Together, our

Run name Codebook Average EER Average AUC

4-SIFT Hard-assignment 0.2345 0.8387
Rescaled 4-SIFT Hard-assignment 0.2345 0.8387
Soft 4-SIFT Soft-assignment 0.2355 0.8375
2-SIFT Hard-assignment 0.2435 0.8300
OpponentSIFT Hard-assignment 0.2530 0.8217

Table 1: Overall results of the University of Amsterdam evaluated over all concepts in the Large-
Scale Visual Concept Detection Task using the equal error rate (EER) and the area under the
curve (AUC).



Concept 4-SIFT Soft 4-SIFT 2-SIFT Opp.SIFT Concept 4-SIFT Soft 4-SIFT 2-SIFT Opp.SIFT

Clouds 0,958 0,958 0,951 0,945 No-Visual-Time 0,833 0,835 0,822 0,815

Sunset-Sunrise 0,953 0,954 0,947 0,946 Indoor 0,830 0,835 0,823 0,810

Sky 0,945 0,948 0,935 0,930 Familiy-Friends 0,834 0,834 0,822 0,813

Landscape-Nature 0,944 0,942 0,940 0,936 Partylife 0,834 0,834 0,831 0,819

Sea 0,935 0,930 0,932 0,926 Vehicle 0,832 0,832 0,832 0,822

Mountains 0,934 0,931 0,930 0,922 Animals 0,818 0,828 0,811 0,797

Lake 0,911 0,903 0,912 0,900 Citylife 0,826 0,826 0,819 0,813

Beach-Holidays 0,906 0,907 0,898 0,884 Still-Life 0,824 0,825 0,808 0,795

Trees 0,903 0,902 0,892 0,881 Spring 0,822 0,801 0,812 0,791

Water 0,901 0,903 0,892 0,886 Canvas 0,817 0,810 0,803 0,790

Night 0,898 0,895 0,895 0,892 Summer 0,813 0,813 0,791 0,782

River 0,897 0,889 0,891 0,883 Macro 0,812 0,791 0,805 0,795

Outdoor 0,890 0,896 0,879 0,871 No-Visual-Season 0,805 0,806 0,794 0,782

Food 0,895 0,895 0,881 0,877 Small-Group 0,792 0,795 0,784 0,776

Desert 0,891 0,865 0,891 0,884 Single-Person 0,792 0,795 0,780 0,769

Building-Sights 0,880 0,882 0,873 0,861 Out-of-focus 0,792 0,781 0,784 0,774

Big-Group 0,881 0,877 0,870 0,858 No-Visual-Place 0,789 0,786 0,781 0,779

Plants 0,877 0,881 0,853 0,839 Overexposed 0,788 0,782 0,777 0,771

Flowers 0,868 0,875 0,846 0,836 Neutral-Illumination 0,778 0,783 0,775 0,774

Autumn 0,870 0,866 0,863 0,849 Sunny 0,763 0,765 0,744 0,741

Portrait 0,865 0,864 0,857 0,846 Motion-Blur 0,744 0,747 0,725 0,710

Underexposed 0,858 0,859 0,857 0,854 Sports 0,695 0,695 0,679 0,673

No-Persons 0,850 0,858 0,837 0,826 Aesthetic-Impression 0,658 0,662 0,657 0,657

Partly-Blurred 0,852 0,852 0,845 0,830 Overall-Quality 0,656 0,656 0,653 0,658

Winter 0,843 0,846 0,832 0,828 Fancy 0,565 0,559 0,580 0,583

Snow 0,846 0,845 0,829 0,825 Average 0,8387 0,8375 0,8300 0,8217

Day 0,841 0,845 0,831 0,824

No-Blur 0,843 0,845 0,836 0,823

Table 2: Results per concept for our runs in the Large-Scale Visual Concept Detection Task using
the Area Under the Curve. The highest score per concept is highlighted using a grey background.
The concepts are ordered by their highest score.

runs obtain the highest Area Under the Curve scores for 40 out of 53 concepts in the Photo
Annotation task (20 for Soft 4-SIFT, 17 for 4-SIFT and 3 for the other runs). This analysis
has shown us that our system is falling behind for concepts that correspond to conditions we
have included invariance against. Our method is designed to be robust to unsharp images, so for
Out-of-focus, Partly-Blurred and No-Blur there are better approaches possible. For the concepts
Overexposed, Underexposed, Neutral-Illumination, Night and Sunny, recognizing how the scene
is illuminated is very important. Because we are using invariant color descriptors, a lot of the
discriminative lighting information is no longer present in the descriptors. Again, there should
be better approaches possible for these concepts, such as estimating the color temperature and
overall light intensity.

Our system was developed on other datasets, and only the concept models were specifically
learned for the Photo Annotation dataset. Its good performance on this dataset, without changing
the parameter settings, shows that it is generic and generalizes to multiple datasets. But, our
system only performs well on this dataset because the train and test set come from the same source
and have been obtained at the same time. Generalization across the boundary of multiple datasets
is still an unsolved problem: for photos downloaded from Flickr in a different season or general
web images, the performance will be significantly worse. However, all systems participating in the
Photo Annotation task are ‘overtrained’ in this sense, and the models they learned too specific.
An interesting avenue for future editions is to have a second test set with photos from a different
source or moment in time, so this problem can be investigated further.



Average Annotation Score

Run name Codebook with agreement without agreement

Soft 4-SIFT Soft-assignment 0.7831 0.7598
4-SIFT Hard-assignment 0.7812 0.7578
2-SIFT Hard-assignment 0.7780 0.7544
OpponentSIFT Hard-assignment 0.7705 0.7464
Rescaled 4-SIFT Hard-assignment 0.7503 0.7312

Table 3: Results using the hierarchical evaluation measures for our runs in the Large-Scale Visual
Concept Detection Task.

3.3 Evaluation Per Image

For the hierarchical evaluation, overall results are shown in table 3. When compared to the
evaluation per concept, the Soft 4-SIFT run is now slightly better than the normal 4-SIFT run. Our
attempt to improve performance for the hierarchical evaluation measure using a linear rescaling
of the concept likelihoods has had the opposite effect: the normal 4-SIFT run is better than the
Rescaled 4-SIFT run. Therefore, further investigation into building a cascade of concept classifiers
is needed, as simply using the individual concept classifiers with their class priors does not work.

4 Conclusion

Our focus on invariant visual features for concept detection in ImageCLEF 2009 has been suc-
cessful. It has resulted in the top ranking for the large-scale visual concept detection task in
terms of both EER and AUC. For 40 individual concepts, we obtain the best performance of all
submissions to the task. For the hierarchical evaluation, using the concept likelihoods estimated
by our detectors directly works better than scaling these likelihoods based on the class priors.
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