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Abstract

This paper investigates a novel approach to unsupervised morphology induction relying
on community detection in networks. In a first step, morphological transformation
rules are automatically acquired based on graphical similarities between words. These
rules encode substring substitutions for transforming one word form into another. The
transformation rules are then applied to the construction of a lexical network. The
nodes of the network stand for words while edges represent transformation rules. In
the next step, a clustering algorithm is applied to the network to detect families of
morphologically related words. Finally, morpheme analyses are produced based on the
transformation rules and the word families obtained after clustering. While still in its
preliminary development stages, this method obtains encouraging results at Morpho
Challenge 2009, which demonstrate the viability of the approach.
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1 Introduction

Unsupervised morphology induction, which is the goal of the Morpho Challenge competition series,
consists in automatically discovering a word’s morphemes using only minimal resources such as a
list of the words in the target language and a text corpus. Ideally, unsupervised algorithms should
be able to learn the morphology of a large variety of languages; for Morpho Challenge 2009, the
target languages were English, Finnish, German, Turkish and Arabic.

For our participation at Morpho Challenge 2009 we developed a novel method for unsuper-
vised morphology induction called MorphoNet. MorphoNet relies on a network representation of
morphological relations between words, where nodes correspond to whole word forms and edges



encode morphological relatedness. Networks have been successfully used in recent years to repre-
sent linguistic phenomena for tasks such as word clustering [16], word sense disambiguation [17],
summarisation, or keyword extraction [18]. Moreover, network-based methods have been shown to
perform well for a wide range of NLP applications. In line with this body of research, we propose
to represent morphological phenonema as a network. This approach has two major advantages.
First, it is theoretically grounded in linguistic theories such as the Network Model by J. Bybee
[6] or whole word morphology [19]. It differs from traditional linear concatenative approaches to
morphology in that words, and not morphemes, constitute the basic unit of analysis. Second, it
enables the use of effective network-based clustering and ranking methods. Our model thus bene-
fits from research done on graphs in other domains such as sociology [21] or other areas of NLP. We
especially investigate the use of community structure for morphology induction. Networks with
community structure contain groups of nodes with dense interconnections; in our case, communi-
ties correspond to families of morphologically related words. Communities can be automatically
identified in networks with community detection algorithms. To our knowledge, this is the first
time that community detection algorithms are applied to the task of unsupervised morphology
induction.

Though in its very early development stages, the approach yields promising results at Morpho
Challenge 2009 when compared to standard baselines such as the Morfessor algorithms [7, 8].

The article is structured as follows. In the next section, we report related work. Next, we
describe our method for building lexical networks. In Section 4, we explain how word families
can be discovered based on the network structure, while in Section 5 we detail our approach for
obtaining morpheme analyses. Evaluation results are given in Section 6.

2 Related Work on Morphology Induction

Morphological analysis is useful for many applications like speech recognition and synthesis, au-
tomatic translation or information retrieval. However, all these applications of morphology neces-
sitate morphological resources which are not available for all languages, or, when available, are
often incomplete. Much research has therefore been devoted to the unsupervised acquisition of
morphological knowledge.

Methods for the unsupervised acquisition of morphological knowledge can be classified accord-
ing to the intended result: (i) identification of morphologically related words (clustering), (ii)
splitting of words into morphs (segmentation), and (iii) identification of morphemes (analysis).
Morpheme analysis is the goal of the latest Morpho Challenge competitions, while for some ap-
plications, such as information retrieval, it is often sufficient to retrieve morphologically related
words without proceeding to a full analysis. The identification of morphologically related words
has been attempted by unsupervised methods [5] as well as approaches using dictionaries as input
data [15].

Segmentation is certainly the method which has gathered the largest amount of interest in the
NLP research community [4, 7, 9, 10]. It follows linear concatenative approaches to morphology
such as item-and-arrangement, which postulates that words are formed by putting morphemes
together. There are, however, some well known limitations to purely concatenative approaches,
which are seldom dealt with by unsupervised segmentation methods. These phenomena include:
(a) Ablaut and umlaut, i.e. vowel changes within a base as in English sing, sang, sung or German
Kloster (singular) and Klöster (plural); (b) Infixation, i.e. affixes which are found within a base;
(c) Expletive infixation, such as -bloody- in absobloodylutely ; (d) Root-and-pattern morphology, as
in Arabic.1 In order to address these limitations, our method makes no assumption on the internal
structure and morphotactics of words. It identifies flexible word transformation rules which encode
substring substitutions for transforming one word form into another. These transformation rules
are not limited to concatenative processes such as prefixation or suffixation (see Section 3.2).

1We refer the reader to Aronoff and Fudeman [1] and Bauer [3] for clear and short introductions to the listed
phenomena.



Unsupervised methods rely on many properties for morphology induction, which are too nu-
merous to be listed here. The most obvious cue is usually graphical relatedness: two words which
share a long enough common substring are likely to be morphologically related. Graphical relat-
edness can be estimated by measures of orthographic distance [2] or by finding the longest initial
(or final) substring [13, 22]. Our system is related to these methods in that it uses fuzzy string
similarity to bootstrap the morphology induction process.

3 Lexical Networks

3.1 Use of Graphs for Morphology Induction

A network can be mathematically represented as a graph. Formally, a graph G is a pair (V,E),
where V is a set of vertices (nodes) and E ⊆ V × V is a set of edges (lines, links). The main
advantage of graphs is that they make it possible to take into account multiple dependencies across
elements, so that the whole network plays an important role on the results obtained for a single
element.

The lexical networks built by our method consist of word nodes linked by edges which encode
morphological relations. Similar lexical networks have been previously described by Hathout [14].
Our approach differs however from Hathout’s in two main aspects: (i) it is fully unsupervised and
uses only a raw list of words as input, while Hathout’s method acquires suffixation patterns from
WordNet, and (ii) we attempt to take a broader range of morphological phenomena into account
by acquiring morphological transformation rules which are not limited to suffixation.

3.2 Acquisition of Morphological Transformation Rules

The first step in our method consists in acquiring a set of morphological transformation rules. Mor-
phological transformation rules make it possible to transform one word into another by performing
substring substitutions. We represent a rule R with the following notation: pattern → repl,
where pattern is a regular expression and repl is the replacement with backreferences to captur-
ing groups in the pattern. For instance, the rule ^(.+)ly$ → \1 applies to the word totally to
produce the word total.

Transformation rules are related to, though more general than, the notion of affix pairs used
in many methods for the unsupervised acquisition of morphological knowledge, under different
names: patterns [14], rules [22], or transforms [12].

The main advantage of transformation rules over prefix or suffix pairs is that they are not
limited to concatenative processes, which is especially useful for languages such as Arabic, e.g.
when inducing rules for word pairs such as kataba (he wrote) and kutiba (it was written).

These rules are acquired using a subset L of the wordlist W provided for each language. In
our experiments, we used the 10,000 most frequent words whose length exceeds the average word
(type) length.2 The method used to acquire the rules is described in detail in Algorithm 1.

For each word w in the list L we retrieve graphically similar words (Line 5, get close matches)
using a gestalt approach to fuzzy pattern matching based on the Ratcliff-Obershelp algorithm.3

For example, given the target word democratic, the following close matches are obtained: un-
democratic, democratically, democrats, democrat’s, anti-democratic. We then obtain rules (Line 7,
get rule from word pair) by comparing the target word with all its close matches and identifying the
matching subsequences;4 for instance given the word democratic and its close match undemocratic,
we obtain the following rule: ^un(.+)$ → \1.

We have kept all rules which occur at least twice in the training data.5 Moreover, no attempt
is made to distinguish between inflection and derivation.

2Except for Arabic, where there are only 9,641 word forms which are longer than the average word length in the
vowelized version and 6,707 in the non-vowelized version.

3We used the implementation provided by the Python difflib module with the cutoff argument set to 0.8.
4Matching subsequences are identified by the get matching blocks Python method.
5For Arabic, we even kept all rules given the small size of the input word list.



Algorithm 1 Procedure for the acquisition of morphological transformation rules, given an input
list of words L.

1: rules← ∅
2: n← len(L)
3: for i = 1 to n do
4: w ← L[i]
5: matches← get close matches(w, L[i + 1 : n])
6: for w2 in matches do
7: r ← get rule from word pair(w, w2)
8: add r to rules
9: end for

10: end for
11: return rules

Table 1 lists the number of transformation rules obtained from the datasets provided for Mor-
pho Challenge 20096 along with some examples:

Language Word list # rules Example
English wordlist.eng 834 ^re(.+)s$ → \1
Finnish wordlist.fin 1,472 ^(.+)et$ → \1ia
German wordlist.ger 771 ^(.+)ungen$ → \1t
Turkish wordlist.tur 3,494 ^y(.+)z(.+)$ → \1C\2
Arabic vowelized wordlist.vowara 8,974 ^(.+)iy(.+)$ → \1uw\2
Arabic non-vowelized wordlist.nvara 2,174 ^b(.+)$ → \1

Table 1: Morphological transformation rules acquired for the input datasets.

3.3 Construction of a Lexical Network

Once transformation rules have been acquired, they are used to build a lexical network represented
as a graph. Nodes in the graph represent words from the input word list W . Two words w1 and
w2 are connected by an edge if there exists a transformation rule R such that R(w1) = w2. The
graph obtained using this method is directed based on the direction of the rules applied. Figure 1
displays an example lexical network.

4 Acquisition of Word Families

The graphs we obtain usually contain one large connected component, along with smaller con-
nected components. Extracting connected components is thus not reliable enough to identify word
families, i.e. groups of words which are related both semantically and orthographically. For in-
stance, the lexical network depicted in Figure 1 contains one large connected component, which
clearly consists of two different word families. The induction of word families can be formulated as
a classical problem of community detection in graphs, and thus be solved by clustering algorithms.

Communities correspond to groups of tightly-knit nodes characterised by a high intra-group
density and a lower inter-group density [20]. There are several methods to detect communities in
graphs. Markov Clustering [23] for instance consists in partitioning a graph by simulating random
walks in the graph; it has been used to detect communities in a graph of nouns by Dorow et al.
[11]. The community detection method described by Newman [20] has been applied to natural
language data by Matsuo et al. [16] for graphs based on word similarity measures by web counts.

6http://www.cis.hut.fi/morphochallenge2009/



insulated

insulate

insulates

insulator

insulators

insulation insulted

insult

insults

insulting

insulation's

insulating

insultingly

Figure 1: Example lexical network.

The method proposed by Newman relies on the modularity function Q which measures the
quality of a division of a graph into communities. The advantages of this method are that it is not
necessary to know the number of communities beforehand and it needs no fine parameter tuning.
Modularity compares the number of edges within communities to the number of expected edges:

Q =
∑

i

(eii − (
∑

j

eij)2)

where eii is the fraction of the edges in the network that connect nodes within community i,
eij is one-half of the fraction of edges in the network that connect nodes in community i to those
in community j and

∑
j eij is the fraction of edges connected to nodes in community i.

A good division corresponds to more edges within communities than would be expected by ran-
dom chance, that is to say a positive modularity value Q. Modularity is high when there are many
edges within communities and few between them. Figure 2 illustrates the results of Newman’s
algorithm on the lexical network of Figure 1: in this case, two communities are identified.

The main difficulty lies in finding the division which yields the best value for Q. It is of
course infeasible to test each possible division of the network. Newman [20] therefore proposes a
method of agglomerative hierarchical clustering starting from communities made of a single node.
Communities are repeatedly joined together in pairs, choosing the join that leads to the biggest
increase (or slightest decrease) of Q. The best partition of the network in communities corresponds
to the biggest value of Q.

Our experiments with the Newman Clustering algorithm have nevertheless shown that it tends
to detect bigger communities than wanted, thus decreasing the precision. We have therefore added
an additional constraint on possible joins by measuring the density of edges across communities
(cross-community edge density).

Cross-community edge density between communities A and B is defined as follows:

DAB =
number of edges(A, B)

|A| × |B|
where number of edges(A, B) is the number of edges linking nodes in community A to nodes

in community B, and |A| and |B| are the number of nodes in community A and B, respectively.
The minimum cross-community edge density is fixed by a parameter d whose value ranges from

0 to 1.



Figure 2: Illustration of Newman Clustering on a lexical network: two communities have been
detected.

Table 2 displays several word families identified with this clustering algorithm. Most families
are very precise, but expected families are fragmented into several smaller families, which lowers
recall.

5 Morpheme Analyses

After performing clustering, morpheme analyses are obtained based on the word families identified
and the transformation rule edges linking words which belong to the same family. First, a repre-
sentative word is identified for each word family: this is the shortest word in the family; in case
of a tie, the most frequent among the shortest words is chosen. The full morpheme analysis for a
word form w consists of its family representative and a string representation of the transformation
rules that apply to w. The method is detailed in Algorithm 2.

Algorithm 2 Procedure for obtaining the morpheme analyses, given a word family C and the
lexical network G.

1: analyses[∗]← ∅
2: subg ← get subgraph(G, C)
3: for edge (w1, w2, rule) in subg do
4: analyses[w1]← analyses[w1] ∪ to plain string(rule.pattern)
5: analyses[w2]← analyses[w2] ∪ to plain string(rule.repl)
6: end for
7: rep← get family representative(C)
8: for word w in word family C do
9: analyses[w]← analyses[w] ∪ rep

10: end for
11: return analyses



1 absorbers absorbing absorber absorbes re-absorbing absorbingly absorb absorbs reabsorb
// absorbable non-absorbable absorbables // super-absorbent super-absorbency superab-
sorbent // aborbed unabsorbed self-absorbed absorbed well-absorbed non-absorbed //
high-absorbency absorbent absorbant absorbency absorbents absorbencies

2 well-documented undocumented documented document’s // documents documents’ docu-
mentation documention document-based documenting document // documentarian docu-
mentary’s documentary documentaries

3 friendship’s friendship friendships // friend’s friendly’s fiends friendy friends friendlier
friendly firends fiend friends’ friend unfriendly friendlies

4 emigrants emigrants’ emigrant emigrant’s // emigrators emgrated emigrates emigrated
emigrations emigration emigratiion emigrate emigrating // migrated outmigration out-
migration migration migrates migratory migrations transmigration non-migratory migrat-
ing

5 sparkler sparkling sparkles sparkled sparklers non-sparkling sparkle sparklingly

Table 2: Example word families obtained for English. The sign “//” marks a community boundary
indicating family separations. The parameter d was set to 0.1.

Example Consider for instance the communities represented in Figure 2. The representative
for the word family {insulted ;insulting ;insult ;insults;insultingly} is insult since it is the shortest
word. The complete analyses for the words are the following:

insultingly insult ly ingly
insulting insult ing
insulted insult ed
insults insult s
insult insult

Two transformation rules apply to the word insultingly : ^(.+)ly$ → \1 and ^(.+)ingly$ → \1,
which are represented in the final analysis as ly ingly.

6 Evaluation

In this section, we report the results obtained by MorphoNet at Morpho Challenge 2009 com-
petitions 1 (linguistic evaluation) and 2 (information retrieval). For all languages, the value of
parameter d (cross-community edge density) was empirically set to 0.1 for community detection.

6.1 Morpho Challenge Competition 1

Tables 3 to 8 contain the results of the linguistic evaluation (competition 1), including both the
results for sample gold standards (dev) and for the final evaluation dataset (all). We also list the
results obtained by the reference methods provided by the organisers: Morfessor baseline (Morf.
baseline) and Morfessor CatMAP (Morf. CatMAP). Results are measured in terms of Precision
(P), Recall (R) and F-Measure (F).

Method P R F

MorphoNet - dev 68.00% 45.65% 54.63%

MorphoNet - all 65.08% 47.82% 55.13%

Morf. baseline 74.93% 49.81% 59.84%

Morf. CatMAP 84.75% 35.97% 50.50%

Table 3: English results.

Method P R F

MorphoNet - dev 58.80% 28.98% 38.83%

MorphoNet - all 67.41% 30.19% 41.71%

Morf. baseline 81.70% 22.98% 35.87%

Morf. CatMAP 71.08% 38.92% 50.30%

Table 4: German results.



Method P R F

MorphoNet - dev 58.84% 22.18% 32.21%

MorphoNet - all 63.35% 22.62% 33.34%

Morf. baseline 89.41% 15.73% 26.75%

Morf. CatMAP 79.01% 31.08% 44.61%

Table 5: Finnish results.

Method P R F

MorphoNet - dev 90.90% 3.83% 7.36%

MorphoNet - all 92.52% 2.91% 5.65%

Morf. baseline 86.87% 4.90% 9.28%

Morf. CatMAP - - -

Table 6: Arabic vowelized results.

Method P R F

MorphoNet - dev 59.92% 33.30% 42.81%

MorphoNet - all 61.75% 30.90% 41.19%

Morf. baseline 89.68% 17.78% 29.67%

Morf. CatMAP 79.38% 31.88% 45.49%

Table 7: Turkish results.

Method P R F

MorphoNet - dev 86.51% 5.04% 9.53%

MorphoNet - all 90.49% 4.95% 9.39%

Morf. baseline 91.77% 6.44% 12.03 %

Morf. CatMAP - - -

Table 8: Arabic non-vowelized results.

Except for Arabic, where no results have been provided for Morfessor CatMAP, MorphoNet
obtains intermediate results between both Morfessor systems. In Finnish, German and Turk-
ish, MorphoNet performs better than Morfessor baseline, but worse than Morfessor CatMAP. In
English, MorphoNet performs better than Morfessor CatMAP and worse than Morfessor baseline.

The results show that MorphoNet consistently obtains better precision than recall, especially
in Arabic. The method relies on a list of transformation rules which are automatically acquired.
It is therefore likely that some important rules are missing, leading to low recall. This problem
might be solved by performing multiple iterations of rule induction and clustering or by applying
rules in a cascaded manner, so that one rule applies to the output of another rule.

Moreover, the procedure for obtaining morpheme analyses is still very coarse and could easily
be improved by detecting composite morphemes. For instance, ingly could be decomposed into
ing and ly.

Finally, transformation rules could be weighted by their frequency to improve clustering.

6.2 Morpho Challenge Competition 2

Table 9 summarises the results of the information retrieval (IR) task (competition 2). Results for
the reference systems are also provided, as well as results without morpheme analysis (no analysis).
The best results are in bold.

Method English German Finnish
MorphoNet 0.3560 0.3167 0.3668
Morfessor baseline 0.3861 0.4656 0.4425
Morfessor CatMAP 0.3713 0.4642 0.4441
Snowball 0.4081 0.3865 0.4275
TWOL - first 0.3957 - 0.4976
TWOL - all 0.3922 - 0.4845
Grammatical - first 0.3734 0.3353 0.4312
Grammatical - all 0.3542 0.3014 0.4090
No analysis 0.3293 0.3509 0.3519

Table 9: IR results (average precision AP).

MorphoNet improves the IR results over unanalysed words for English and Finnish, but not
for German. While it is difficult to come up with a clear explanation, this might be due to the
compounding nature of German. Indeed, the MorphoNet system does not directly cope with
compounding for the time being, which might be detrimental to the IR task.



7 Conclusions and Future Work

We have described a novel linguistically motivated approach to unsupervised morpheme analysis
relying on a network representation of morphological relations between words. Due to the un-
derlying network representation, it is possible to use community detection and ranking methods
devised for other kinds of data. This approach is still in its very early stage, yet the results
obtained at Morpho Challenge 2009 demonstrate that it yields very promising results and thus
deserves further investigation.

The method described in this paper can be considered as a baseline for network-based mor-
phology induction. It leaves lots of room for improvement. A first objective would be to obtain
a better recall for morpheme analysis. This necessitates to provide a better mechanism for the
acquisition of transformation rules. It should be possible to perform multiple iterations of the rule
induction and clustering cycle or to apply rules in a cascaded manner. This is especially needed
for languages which are morphologically more complex than English such as Turkish or Finnish.
Also, we have not weighted the edges in the graph, which could be useful to improve clustering.

The clustering method performs hard-clustering: each word belongs to only one family. This is
especially detrimental for languages like German, for which it would be desirable to allow multiple
family membership in order to take compounding into account. In the future, we would therefore
like to better address compounding.

Graphs also open up the way for a new form of modelisation of morphology enabling the
analysis of crucial morphological properties. Node properties in the graph could be used to rank
nodes and detect base words in families, using algorithms such as PageRank. Moreover, edge
properties could be employed to differentiate between different forms of morphological processes
such as inflection and derivation. We will consider these posibilities in our future work.
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