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Abstract

This paper presents the work of the MMIS group done at ImageCLEF 2009. We
submitted five different runs to the Photo Annotation task. These runs were based on
two non-parametric density estimation models. The first one evaluates a set of visual
features and proposes a better, weighted set of features. The second approach uses
keyword correlation to compute semantic similarity measures using several knowledge
sources. The knowledge sources used are, the training set of the collection, Google
Web search engine, WordNet and Wikipedia. Evaluation of results is done under two
different metrics, one based on ROC curves and the other in a hierarchical measure
proposed by the organisers. Our results are quite encouraging; under the first metric
our best run was located between the median and the top quartile and under the second
metric our best run was between the first quartile and the median.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.4 Systems and Software; H.3.7 Digital Libraries; I.4 [Image
Processing and Computer Vision]: I.4.8 Scene Analysis; I.4.9 Applications

General Terms

Algorithms, Experimentation, Performance, Measurement
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1 Introduction

In this paper, we describe the experiments performed by the MMIS group at ImageCLEF 2009.
We participated in the Large Scale Visual Concept Detection and Annotation Task. The main goal
of this task is, as described in [13], given a training set of 5,000 images manually annotated with
words coming from a vocabulary of 53 visual concepts, to automatically provide annotations for
a test set of 13,000 images. The visual concepts are organized in a small ontology so participants
may take advantage of the hierarchical order of the concepts and the relations among them for
better accomplishing the annotation task. Another important goal of this year competition is to
reflect about the influence of large amount of data and concepts in the annotation task and about
whether or not an ontology can help.



We submitted five runs in total. Each one of them is based on a different non-parametric
density estimation model but placing emphasis on different aspect of the research field. For
instance, the run MMIS 33 2 1245434554581.txt is evaluating a sequence of possible image fea-
ture selections in order to propose a better, weighted set of features while the other four runs
MMIS 33 2 1245586552541.txt, MMIS 33 2 1245601239738.txt, MMIS 33 2 1245611281967.txt,
and, MMIS 33 2 1245674693001.txt attempt to improve a baseline probabilistic model taking ad-
vantage of the correlation between keywords computing semantic similarities measures using dif-
ferent knowledge bases.

Evaluation of results have been done under two different metrics, one is based on ROC curves [4]
and proposes as measures Equal Error Rate (EER) and the Area under Curve (AUC) while the
second metric is the hierarchical measure proposed by [14] that considers the relations between
concepts and the agreement of annotators on concepts. All in all, our results are quite encouraging,
under the first metric our best run was located between the median and the top quartile and under
the second metric our best run was between the first quartile and the median.

The rest of this paper is organised as follows. Section 2 provides an introduction on non-
parametric density estimation. Section 3 describes the first approach followed while Section 4
illustrates the second one. Then, our evaluation results are discussed in Section 5. Finally,
Section 6 shows our conclusions.

2 Non-parametric Density Estimation

Both approaches followed in this research are variations of the probabilistic framework developed
by Yavlinsky et al. [16] who used global features together with a non-parametric density estima-
tion. This approach is based on the Bayes rule being the ultimate goal to model f(x|ω) for each
annotation keyword ω, being x a feature vector representing a test image. The non-parametric
approach is employed because the distributions of image features have irregular shapes that do
not resemble a priori any simple parametric form.

The function f(x|ω) is estimated following a kernel k based approach as represented in:
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while the approach described in Section 4 uses a Gaussian kernel as shown in:
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where t = x−x(i) and hl is the bandwidth of the kernel which is set by scaling the sample standard
deviation of feature component l by the same constant λ.

2.1 Image Features

A key aspect of the non-parametric density estimation approach is the global visual features used.
The algorithm described in Section 3 used four features: CIELAB and HSV colour descriptors



combined with Tamura and Gabor texture descriptors while our second algorithm 4 combines the
CIELAB color feature with the Tamura texture.

CIE L*a*b* (CIELAB) [7] is the most complete colour space specified by the International
Commission on Illumination (CIE). Its three coordinates represent the lightness of the colour
(L*), its position between red/magenta and green (a*) and its position between yellow and blue
(b*). The histogram was calculated over two bins for each coordinate.

HSV is a cylindrical colour space with H (hue) being the angular, S (saturation) the radial and
V (brightness) the height component. The H, S and V axes are subdivided linearly (rather than
by geometric volume) into two bins each. The HSV colour histogram is normalised so that this
components add up to one.

The Tamura texture feature [15] is computed using three main texture features called “con-
trast”, “coarseness”, and “directionality”. Contrast aims to capture the dynamic range of grey
levels in an image. Coarseness has a direct relationship to scale and repetition rates and it was
considered by Tamura et al. as the most fundamental texture feature and finally, directionality is
a global property over a region. The histogram was calculated over two bins for each feature.

The process for extracting each of these features is as follows, each image is divided into nine
equal rectangular tiles, the mean and second central moment feature per channel are calculated
in each tile. The resulting feature vector is obtained after concatenating all the vectors extracted
in each tile.

The final feature extracted is a texture descriptor produced by applying a Gabor filter to enable
filtering in the frequency and spatial domain. Our implementation is based on [10]. To each image
we applied a bank of four orientation and six scale sensitive filters that map each image point to a
point in the frequency domain. This feature was calculated on the whole image rather than using
the tiling approach.

3 Weighted Global Features

The original implementation of this algorithm used two features: CIELAB and Tamura. Subse-
quent work evaluated a sequence of possible feature selections [8] and proposed a better, weighted
set of features. The feature sets to be evaluated were constructed based on information from
existing literature about visual feature selection and attempted to avoid descreasing performance
due to redundant features or multi-variate prediction.

The feature set proposed from this set of evaluations added two additional features, HSV
colour and Gabor texture, to the original CIELAB and Tamura descriptors. These features were
weighted at CIELAB - 0.75, HSV - 0.5, Tamura - 0.5 and Gabor - 0.5. This set improved the
mean average precision when evaluated on the standard Corel5k dataset [3] and the IAPR TC12
dataset used for ImageCLEF 2006 [6].

The run is labelled MMIS 33 2 1245434554581.txt and is based on the approach used in
[16]. The four chosen features were extracted from the training set to train the non-parametric
density estimation annotator which then provided the probability of each concept being present
in the test image. Manhattan distance was used for all features.

This algorithm represented a straight-forward approach that exploited only the global low-level
features and the supervised learning of a prediction model. We predicted that this set of features
would provide a good coverage of the colour and texture space and sufficient details without placing
an excessive calculation burden on the system. Initial tests using ten-fold cross-validation on the
training set re-enforced this expectation.

4 Exploiting Word Correlations to Compute Semantic
Similarities

The early attempts in automated image annotation were focused on algorithms that explored the
correlation between words and image features. More recently, there are some efforts which attempt



to benefit from exploiting the correlation between words computing semantic similarity measures.
Among the many uses of the concept “semantic similarity”, we refer to the definition by Miller and
Charles [11] who consider it as the degree of contextual interchangeability or the degree to which
one word can be replaced by another in a certain context. Consequently, two words are similar
if they refer to entities that are likely to co-occur together like “mountains” and “vegetation”,
“beach” and “water”, “buildings” and “road”, etc. In this research we will use indistinctly the
term semantic similarity and semantic relatedness.

This non-parametric density estimation model exploits the statistical correlation between words
by computing semantic similarity measures using different knowledge bases. We propose four
versions of this model that differ on the knowledge base used as source of information and the
semantic similarity measure employed. The knowledge bases used are, the training set of the
collection, Google Web search engine, WordNet, and Wikipedia. The semantic similarity measures
used are explained in Section 4.2.

The process can be described as follows. We calculate the probability value of each concept
being present in each image of the test set following the non-parametric density estimation de-
scribed in Section 2. Then, a statistical keyword correlation is computed using the corresponding
knowledge base. With the help of the semantic similarity measures and applying some rules the
accuracy of the final annotations is improved.

4.1 Parameter Estimation

We divided the dataset into three parts: a training set, a validation set and a test set. The
validation test is used to find the parameters of the model. Thus, we performed a 10-fold cross
validation on the training set. After that, the training and validation set are merged to form a
new training set of 5,000 images that is used to predict the annotations in the test set of 13,000
images.

4.2 Submitted Runs

In this subsection, we describe the four submitted runs based on this approach:

MMIS 33 2 1245586552541.txt This run is based on the approach developed in [9] where the
training set is computed to generate a co-occurrence matrix that represents the probabilities
of the frequency of two vocabulary words appearing together in a given image. This algorithm
was previously tested on the Corel5k collection and in the collection provided by the last
edition of ImageCLEF, in 2008.

MMIS 33 2 1245611281967.txt The semantic similarity measure used in this run is called
web-based semantic relatedness measure as it uses Google Web search engine as knowledge
base. It was developed by Gracia and Mena [5] who defined the semantic relatedness between
the concepts x and y, as:

rel(x, y) = e−2NWD(x,y), (4)

whereNWD stands for Normalized Web Distance which is a generalisation of the Normalized
Google Distance (see Equation 5) extended to any web-based search engine as source of
frequencies. The Normalized Google Distance (NGD) between two terms x and y, was
expressed by Cilibrasi and Vitányi [2] as:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

logN −min{log f(x), log f(y)}
, (5)

where f(x) and f(y) are the counts for search terms x and y using Google and f(x, y) is,
the number of web pages found on which both x and y occur. N is the total number of web
pages searched by Google which, in 2007, was estimated to be more than 8bn pages.



MMIS 33 2 1245674693001.txt This run uses the adapted Lesk measure applied to WordNet
proposed by Banerjee and Pedersen in [1]. They defined the extended gloss overlap measure
which computes the relatedness between two synsets c1 and c2 by comparing the glosses of
synsets related to them through explicit relations provided by WordNet:

rel(c1, c2) =
∑

score(R1(c1), R2(c2)), ∀(R1, R2) ∈ relPairs. (6)

Thus, the set relPairs is defined as follows:

relPairs = {(R1, R2) | R1, R2 ∈ rels; if(R1, R2) ∈ relPairs, then(R1, R2) ∈ relPairs},
(7)

being rels a non-empty set of relations that consists of one or more of the following relations:

rels ⊂ {r | r is a relation defined in WordNet}. (8)

MMIS 33 2 1245601239738.txt This run computes the semantic relatedness between two con-
cepts applying the Wikipedia measure defined by Milne and Witten. In [12], they proposed
their Wikipedia Link-based Measure (WLM) which extracts semantic relatedness measure
between two concepts using the hyperlink structure of Wikipedia. The semantic relatedness
between concepts x and y is estimated by the angle between the vectors of the links found
between the Wikipedia articles whose title matches each one of the concepts:

rel(x, y) =
~x · ~y
|~x| · |~y|

, (9)

where the vectors for article x and y are built using link counts weighted by the probability
of each link occurring, as seen in:

~x = (w(x→ l1), w(x→ l2), ..., w(x→ ln)) , (10)

and, in:
~y = (w(y → l1), w(y → l2), ..., w(y → ln)) . (11)

Thus, the weighted value w for the link a→ b can be defined as:

w(a→ b) = |a→ b| · log

(
t∑

x=l

t

|x→ b|

)
, (12)

being t is the total number of articles within Wikipedia.

5 Evaluation Measures and Results

We used two metrics to determine the quality of the annotations. The first metric is based on ROC
curves [4]. Initially, a receiver operating characteristic (ROC) curve was used in signal detection
theory to plot the sensitivity versus (1 - specificity) for a binary classifier as its discrimination
threshold is varied. Later on, ROC curves were applied to information retrieval in order to
represent the fraction of true positives (TP) against the fraction of false positives (FP) in a binary
classifier. The Equal Error Rate (EER) is the error rate at the threshold where FP=FN. The
area under the ROC curve, AUC, is equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one. Note that, the lower the
EER, the better the annotations.

In Table 1, we show the results for all our submitted runs under the EER and AUC metric. Our
best run corresponds to MMIS 33 2 1245434554581.txt that follows the first approach of weighted
global features. This run achieved a reasonable EER across all concepts of just over 31% which
was consistent with the predicted performance from our earlier ten-fold cross validation. Table 2



Table 1: EER and AUC results for all the runs of MMIS group

Algorithm EER AUC
Random 0.500280 0.499307
MMIS 33 2 1245434554581.txt 0.312366 0.744231
MMIS 33 2 1245586552541.txt 0.352478 0.689410
MMIS 33 2 1245601239738.txt 0.356945 0.684821
MMIS 33 2 1245611281967.txt 0.352485 0.689407
MMIS 33 2 1245674693001.txt 0.352612 0.689342

Table 2: Top 10 best concepts best MMIS run

Concept EER AUC
Sunset-Sunrise 0.181372 0.889386
Clouds 0.192238 0.875234
Underexposed 0.207616 0.871133
Sky 0.211369 0.865876
Night 0.212004 0.860332
Sea 0.213746 0.854027
Mountains 0.217231 0.846818
Landscape-Nature 0.225471 0.84186
Desert 0.232747 0.810619
Food 0.251319 0.828054

shows that the ten best concepts identified by this annotator are those which have previously
performed well using only global visual features. With the exception of “Underexposed”, the best
performing concepts belong to fairly common visual categories, primarily landscape elements.

Regarding the four runs based on keyword correlation, we observe that the best performance
is achieved using the training set as corpora. Not surprisingly, the second best is the run based
on Google Normalized Distance that uses Google Web search engine as knowledge source. This is
due to the fact that both approaches do not reply on a prior disambiguation process like WordNet
and Wikipedia.

The worst result corresponds to the run based on Wikipedia. The reasons behind it might
be found in the strong dependency of the semantic relatedness measure on doing a proper word
disambiguation. The disambiguation in Wikipedia is automatically performed by selecting the
sense of the word more probable according to the content store on Wikipedia database.

The 53 concepts of the proposed vocabulary belong to one of the following categories: Scene
description, Seasons, Place, Landscape Elements, Time of the day, Picture representation, Illumi-
nation, Quality Blurring, Picture Objects, and Quality Aesthetics.

Most of the categories do not correspond to real visual features and the best way of predicting
them is making use of the “exif” metadata. As our focus is on visual features we have not incor-
porated them in any of our algorithms. Consequently, we predicted and posteriorly checked, lower
results for concepts classified into categories such as Seasons, Time of the day, Picture represen-
tation, Illumination, Quality Blurring and specially, the most subjective one, Quality Aesthetics.

The second metric is the proposed hierarchical measure [14] that considers the relations between
concepts and the agreement of annotators on concepts. In Table 3, the results of all our submitted
runs are shown. The best run is the one based on Google Web search engine followed by the co-
occurrence, and WordNet approaches. This makes sense as all these runs are employing semantic
similarity measures on external ontologies, which is exactly the criteria that the hierarchical score
attempts to evaluate. The run which applied weighted global features relied less on the hierarchical



Table 3: Average Annotation Score for all the runs of MMIS group

Algorithm With Annotator Without Annotator
Random 0.3843171 0.35097164
MMIS 33 2 1245434554581.txt 0.5479666 0.49800622
MMIS 33 2 1245586552541.txt 0.6179764 0.57577974
MMIS 33 2 1245601239738.txt 0.4205571 0.35027474
MMIS 33 2 1245611281967.txt 0.6180272 0.57583610
MMIS 33 2 1245674693001.txt 0.6172693 0.57497290

information and therefore did not perform as well using the metric.

6 Conclusions

While it is difficult to make conclusive statements about the submitted runs as the differences in
their performance are minimal, the results do re-enforce previous expectations.

The performance of our best run (according to EER) supports previous findings about the im-
pact of feature selection and weighting on the non-parametric density algorithm as it outperforms
the other four runs which used the original features.

With respect to the second metric (hierarchical measure), the best runs are those that use as
knowledge base the training set and Google Web search engine because the rest of the approaches
(WordNet and Wikipedia) have been penalised as a result of the prior disambiguation process that
follow.

Interestingly the metric to distinguish the performance of annotators based on measurement of
the hierarchical distribution isolates the feature weighting run. This alternative method of ranking
performance gives valuable insight into the influence and impact of the analysis of hierarchical
labels in image annotation. It is likely that annotators that achieve a higher ranking using the
hierarchical measure have better distribution across the concepts. Further analysis is needed to
determine if annotators with a better hierarchical measure are also more robust overall.
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