
UAIC: Participation in TEL@CLEF task

Adrian Iftene, Alina-Elena Mihăilă, Ingride-Paula Epure

UAIC: Faculty of Computer Science, “Alexandru Ioan Cuza” University, Romania

{adiftene, elena.mihaila, paula.epure}@info.uaic.ro

Abstract. In 2009 was first time when we built a system in order to participate

in the TEL@CLEF competition. In this competition the aim is to build retrieval

algorithms on multilingual collections of catalog records from TEL collections.

Our system has four main components: the pre-processing and indexing

component, the component responsible with applying rules, the translation

component and the searching component. This paper presents how we

implement these components and how interacts them in order to achieve the

desired purpose.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3

Information Search and Retrieval; H.3.4 [Systems and Software]: Performance

evaluation.

General Terms
Experimentation, Performance, Measurement, Algorithms.

1 Introduction

The aim of the 2009 Ad Hoc1 track was to improve the last year's experience, with the

same three tasks: Tel@CLEF, Persian@CLEF, and Robust-WSD. The general aim of

the task was to create good reusable test collections for each of them. The main task

offers monolingual and cross-language search on library catalog records in English,

French, and German, organized in collaboration with The European Library (TEL2)

(Agirre et al., 2008).

In 2009, TEL@CLEF evaluated retrieval algorithms on multilingual collections of

catalog records. As in 2008, the collections were derived from the English, French

and German archives of The European Library. The task is to search and retrieve

relevant items from collections of library catalog cards.

Data from this year was very different from the news corpora previously used in

the CLEF ad hoc track, consisting of bibliographic data (document surrogates).

Whereas in the traditional ad hoc task, the user searches for document containing

1 Ad-Hoc task: http://www.clef-campaign.org/2009/2009Ad-hoc-tasks.html
2 TEL: http://www.theeuropeanlibrary.org/

information of interest, here the user will be searching to identify which publications

are of potential interest – according to the information provided by the catalog card.

The question the user is asking is “Is the publication described by the bibliographic

record relevant to my information need?”.

Three target collections were provided: TEL Catalog records in English (Copyright

British Library (BL)), TEL Catalog records in French (Copyright Bibliothèque

nationale de France (BnF)), and TEL Catalog records in German (Copyright Austrian

National Library (ONB)). All three collections are to some extent multilingual and

contain documents (catalog records) in many additional languages.

The way in which we built the system for TEL track and it components are

presented in Section 2, while Section 3 presents the runs submitted details. Last

Section presents conclusions regarding our participation in TEL 2009 track.

2 UAIC System for TEL@CLEF

Our system performs the following operations: pre-processing, indexing, applying

rules, translation and searching. The Figure 1 presents the system architecture.

Figure 1: UAIC system used in TEL@CLEF 2009

Rules

Initial

Queries

Lucene

Queries 1

Lucene

Queries 2

English

TEL data

Filtered

TEL data

 Lucene

Digester

Lucene

Index

Final

Result

Google

Translate

Details about the main system components are presented below.

2.1 Pre-processing and Indexing

Pre-processing step help us in selection of relevant tags from XML files. We used

Digester3 for selecting just the attributes we are interested in (title and subject). We

have an xml configure file named "playRules.xml" for Digester, where we put the

rules that Digester must respect when we parse the xml files (from the library).

At this step we use Lucene4 (Hatcher and Gospodnetic, 2005). We used Lucene in

order to index the XML files filtered with Digester and after that to search in this

index the relevant documents.

First we created an object of Document type in Lucene terminology, which will be

assigned to each article that we want to index. We considered the fields: “docno”,

“title” and “subject” and we filled them with the corresponding values for the article

that we want to index. Pairs (field, value) represents the terms of the current

document. The only condition is that the name has to be a String. Add method for the

document will take a Field object type that we build using one of static methods in

class Field. In the end, we need to consider an IndexWriter for indexing of the

Document.

The Document class has a get() method that can be used to extract the information

that was stored in the index. For example, to get the author from the Document we

would code doc.get("author").

Since we added the article itself as Field.UnStored, attempting to get it will return

null. However, since we added the URL of the article to the index, we can get the

URL and display it to the user in our result list.

2.2 Applying Rules

At this step, in original query in English we identify for every word the lemma and

after that accordingly with the result, we build a new query using the following rules:

• If there are named entities in the query, these entities will be included in title

field and also in the subject field, having, of course, a greater relevance in

comparison with other words (we used boost factor 2, instead of default

boost factor which is 1);

• Else every element of the query is added in the title field, as well as in the

subject field;

• Also, any element of the query (non-named entity) is searched in the Lemma

file and thus obtaining the lemmas corresponding to the word. These lemmas

will be included in the Lucene query having a smaller relevance (boost factor

0.75) than the original word.

In the end, a complex Lucene query is obtained, which is to be sent to the next

module (Translation), so that the Lucene query can be translated.

3 Digester: http://commons.apache.org/digester/
4 Lucene: http://lucene.apache.org/

For example the query will look like:

<query>

<identifier>10.2452/701-AH</identifier>
<lang>en</lang>
<text>subject:document^0.7 subject:documenting^0.7

((subject:documents subject:species)^2.0)
(subject:fauna^2.0 subject:about^2.0 subject:arctic^2.0)
(title:arctic title:animals)</text>
</query>

And the result will be:

10.2452/701-AHQ0 010786904 0 0.15470393 runDefault1
10.2452/701-AHQ0 010786905 1 0.15470393 runDefault1
10.2452/701-AHQ0 010786906 2 0.15470393 runDefault1
10.2452/701-AHQ0 011249616 3 0.15470393 runDefault1
10.2452/701-AHQ0 011249617 4 0.15470393 runDefault1

 ……………………………………………………………

2.3 Translation

We used the Google Java Language API5 to perform the translation of Lucene query

from English to French and German.

The Lucene queries were received in an XML document structured as: the root

element we have tag query, and the children are id, text (that was the query itself) and

the language (en in our case). Every query had an id assigned which helped us keep

the track of the way the translation was performed and the final result was generated

in the result XML.

We created a DOM parser to obtain every Lucene query, then we processed it

using java.util.regex API for pattern matching with regular expressions, so we could

separate the words that needed translation from the ones that don’t.

Finally, after the translation was performed we merged the three queries: the

original one, the one in French and the one in German, and created the output file that

had basically the same structure. These queries were put in the result.xml file and

after that they are sending to the index module.

An example of translate query looks like:

<query>

<identifier>10.2452/701-AH</identifier>
<text>
subject:document^0.7 subject:documenting^0.7
((subject:documents subject:species)^2.0) (subject:fauna^2.0
subject:about^2.0 subject:arctic^2.0)
(title:arctic title:animals) subject:document^0.7
subject:documentation^0.7 ((subject:documents

5 Google Java Language API: http://code.google.com/p/google-api-translate-java/

subject:espÃ¨ces)^2.0) (subject:faune^2.0 subject:Ã propos
de^2.0 subject:Arctique^2.0) (title:Arctique title:animaux)
subject:Dokument^0.7 subject:Dokumenting^0.7
((subject:Dokuments subject:Arten)^2.0) (subject:Fauna^2.0
subject:Ã¼ber^2.0 subject:Arktis^2.0) (title:Arktis
title:Tiere)
</text>

</query>

2.4 Searching

At this part we used again Lucene and we created an IndexSearcher in order to extract

relevant information from previous created Lucene index.

For searching we considered relevant the following values:

• Measure of documents relevance to a query,

• Factors:

o tf: factor of term frequency in document,

o idf: factor of documents with term in index,

o boost: field-level boost,

o coord: factor-based # of query terms in document,

o queryNorm: normalization for query weights.

For example when we are looking for “Arctic Animals” with description “Find

documents about arctic fauna species” the query will look like:

title:arctic animals AND "arctic fauna species"

with meaning: search for arctic animals in field title from Lucene index and search

for arctic fauna species in field subject which is default searching field in Lucene

index.

 As we can see the search will search simultaneously in two fields of the index

created: title and subject.

3 Submitted Runs

We submitted three runs with the following characteristics:

Run 1:
subject has boost 2 and the title has boost 1(default)

[entities have boost 2 and lemmas have boost 0.7]

[subject and title were given in l languages English, French and German]

Run 2:

subject has boost default and the title has boost 2

[entities have boost 2 and lemmas have boost 0.7]

[subject and title were given in l languages English, French and German]

Run 3:

subject and title have the same boost

[entities have boost 2 and lemmas have boost 0.7]

[subject and title were given in l languages English, French and German]

The best result was obtained for Run 1. Statistics for this run are presented in below

statistics.

Figure 2: Average Precision Histogram for UAIC Run 1

Figure 3: R Precision Histogram for UAIC Run 1

Figure 4: Standard Recall Levels vs Mean Interpolated Precision for UAIC Run 1

4 Conclusions

The presented system has four components: (1) pre-processing and indexing, (2)

applying rules, (3) translation and (4) searching. First component after selection of

relevant tags with Digester, uses Lucene libraries in order to create a Lucene index.

Second component transforms the initial query from natural language to Lucene query

and it adds to Lucene query boost factors. Third component translates the Lucene

query from English to French and German and obtained a more complex Lucene

query with elements in all three languages. The last component searches in Lucene

index using Lucene queries and offered like output the system result.

From three runs submitted the first run was the better.

Acknowledgements

The authors would like to thank to the students Ionuţ-Alexandru Bujdei, George-

Leonard Chetreanu, Alexandra Apopoaiei and their colleagues from group 2B, second

year, for their help and support at different stages of system development.

References

1. Agirre, E., Di Nunzio, G. M., Ferro, N., Mandl, T. and Peters, C.: CLEF 2008: Ad Hoc

Track Overview. In Proceedings of the CLEF 2008 Workshop. 17-19 September. Aarhus,

Denmark. (2008)

2. Hatcher, E. and Gospodnetic, O.: Lucene in action. Manning Publications Co. (2005)

