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Abstract

In this paper we describe the participation of TELECOM Pagh in the Large Scale Visual
Concept Detection and Annotation Task at the ImageClef 20@8enge. This year, the focus
was in the extension of (i) the amount of data available faintng and testing, and (ii) the
number of concepts to be annotated. We use Canonical Ciiwrefsnalysis in order to infer
a latent space where text and visual description are highyelated. Starting from a visual
description of a test image, we first map it into the latentspthen we predict the underlying
text features (and also annotations) which best fit the Visoas in the latent space. Our
method is very fast while achieving good results.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Information
Search and Retrieval; H.3.4 Systems and Software; H.3.#dDigibraries; H.2.3 Patabase Manag-
ment]: Languages—Query Languages

General Terms

Measurement, Performance, Experimentation.

Keywords

Image annotation, Canonical Correlation Analysis, Textiamage descriptors.

1 Task description

The Large Scale Visual Concept Detection and Annotatiok {i@ferred here as VCDAT) offers a unified
framework for image annotation to the participating teathg goal is to annotate each test image with
keywords describing the visual content and its semantgrimétation. The task provides annotated images
using 53 concepts; all images have multiple annotationstadoncepts are organized in a small ontology.
The participants are allowed to use the relations betweanegis for solving the annotation task. The
training set consists of 5.000 images annotated with thei&iBal/concepts and the test data consists of
13.000 photos. The participants are allowed to use onlyr#ieing data in order to tune their algorithms.

Two evaluation measures are proposed: (a) per concep: fakstive and false negative rates and (b)
per image: a hierarchical measure that considers partigheaa and calculates misclassification costs for
each missing or wrongly annotated concept, based on stelictiormation (distance between concepts in
the hierarchy) and relationships from the ontology [13].



2 Summary of our approach

This year, the VCDAT focuses on scaling annotation algorgtio thousands of images and possibly more,
which is indeed a very difficult task. Image annotation if ati unsolved problem and recent state of
the art algorithms perform less than satisfactorily on nosige databases [2, 5]. Image annotation is one
branch of computer vision related to object detection andgaition; its goal is to decide whether an image
contains one or multiple targeted objects and if yes, finds thcations. This problem is well studied and
reasonably well solved for particular objects such as fii®sl 7] but remains reputedly difficult for many
other classes of objects [10, 15].

Generally, local approaches, for instance those relyingeypoint extraction or image segmentation,
are likely to offer better results, but at the expense of almhigher computational effort [12, 14]. Regard-
less the computational issues, VCDAT uses 53 concepts ang aidhem areholistic! so local (and also
object based) methods are unlikely to provide descenttesfaulthis particular level of difficulty. Further-
more, local approaches hit the exterme variability of otgjgconcepts) into scenes and the limited amount
of training images in order to capture this variability.

Instead, we focus on global approaches i.e., those whichabdlobal image descriptions and easily
handle large scale databases and annotations. This ditplaill be achieved at the detriment of slight
decrease of precision. Moreover, as we shall see, addingraimihg our system with new concepts is
straightforward and does not require separate models &br @ze.

The remainder of this paper is organized as follows, we figstdbe our visual image and text features
(see§3), then we discuss the application of Canonical Correfatinalysis (CCA) in order to infer a latent
space where the two underlying representations are higithglated §4.) Given a visual description of
a new (test) image, we first project it into the CCA latent gpaben we infer text features as a linear
combination of basic concepts which correlate the best thighvisual one. Finally, we back-project the
resulting text features into the (input) concept space amdievmalize the projection coefficients between
0 and1. Avalue close td means that the corresponding concept is likely to be prastnan image while
a value close t0 corresponds to an unlikely concept.

3 Text and visual content description

Visual descriptors. Global image descriptors have some properties that ayedesirable in our case: (a)
they have small memory footprint and thus fit into standard ®{thout any specific storage requirements;
(b) they are very fast to compute as they involve simple distacomputation operations, guaranteeing real
time responses; and (3) they do not include any a priori ¢bj@ciel and thus can be applied to any target
category. Indeed, global descriptors have been shown forpewell in this framework, for example with
machine learning and data mining algorithms [2, 9, 4].

More precisely, we use a combination of color, texture arapshfeatures, as follows. To represent
color we useweighted color histograms: they provide a summary description of the color informatio
including spatial measure in order to enphasize image nsdlmat are interesting with respect to the visual
content[16, 1]. As fotexture featureswe use the power spectral density distribution in the complane.
This has been shown to perform well when combined with cofwr shape histograms [11]. Roughly,
a high energy spectrum concentrated at low frequenciedigiigs large scale informations in an image,
while high frequencies correspond to textured regions {ssnale details). In order to describe ts®pe
content of an image we use standard edge orientation histogranst, &ttges are extracted from images,
then the gradient is computed using only the edge pixels.ofieatation of the gradient is quantized w.r.t.
the angle resulting into a histogram that is sensible to #meecal flow of lines in the image [8]. More
details on image descriptors can be found in [3].

Text descriptors. We use the annotations provided for the training set inrdaleompute the text features.
The latter havés3 dimensions, one for each concepindicating the presence or the absence.ofThe
resulting feature vector is very sparse; i.e., when apglpiincipal component analysis (PCA), we found
that48 dimensions are sufficient in order to captufi®% of the statistical variance of the training data.

1Holistic means that the annotation is based on a global issfye of a scene and not necessarily related to its phydijetts.



4 Prediction using CCA

Canonical Correlation Analysis was first introduced by Histg [7] and it is used in order to capture linear
relationships between two (or many) orderedmple sets in different feature spaces. Canonical ctimela
analysis seeks a pair of linear transformations, one fdn ehthe feature spaces, which map training and
testing data into a common latent space. The latter is buitrder to maximize the correlation between
the sample sets in different feature spaces[6].

Given a testimage, first we extract its visual feature veatat we project it into the CCA latent space.
Then, we back-project the latent feature vector into the iB3edsions of text space using the Moore-
Penrose pseudo-inverse of the CCA transformation matriaw,Nannotations correspond to the entries
among the 53 dimensions where the score is larger than a thixeshold.

Training data consists of 5.000 images sharing 53 concEjgs1 shows the distribution of the number
of images through different concepts. The most frequentppears in 4656 images while the less frequent
annotates only 18 images. Notice that both “very frequent! ‘asery rare” concepts are difficult to learn
as the underlying positive and negative classes are clealianced.
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Figure 1: Number of images per concepts.

We randomly split the training set in two parts: one useddarmhing the CCA transform (000 images)
and the other one used in order to evaluate the performan@ed(images). Since the output of the
algorithm has an asymptotic normal distribution, we normgsit to 0.5 mean and /6 standard deviation.
This ensures tha&t9.7 of the predicted scores lie betwe@@andl. Scores less thai(resp. larger than)
are mapped to (resp.1).

The evaluation measure we use is the annotation error detite expected false negatives and false
positives. For each conceptwe fix a threshold-(c) and we annotate images withif the underlying
scores are larger tha{c). Notice thatr(c) is fixed in order to minimize the error rate. We then linearly
shift 7(c) to 0.5 in order to comply with the submission format.

On these challenging test images, our annotation methae\ashrelatively reasonable performances;
the false positive error rate (518 while the false negative one reaclie®1. Nevertheless, our method is
very efficient; in practice it tooks about a second in ordexdbieve training and prediction using a standard
Pentium-M processor (with 2500 Mhz).

We also extended our method in order to use the ontology stegyéy the challenge. Text features
were enriched using this ontology in order to include aleintediate concepts and then propagate the

20ne may define any arbitrary order for each sample set butdskeap that order in different feature spaces.



annotation along the hypernyms tree. Notice that predistinclude only thé&3 concepts required by the
benchmark. However, the ontology is too small in order tosfuf® a noticeable improvement. Indeed, its
total number of nodes 88 where53 (out of the68) correspond to the candidate annotations. Again, we
found that text features are still living into a subspacd®flimensions and this clearly shows that new
extended concepts provide the same amount of informationitas ones.

5 Conclusion and per spectives

In this work we introduced the participation of TELECOM Rdiéch in the Large Scale Visual Concept
Detection and Annotation Task at ImageClef 2009. This yleatask focuses in scalability of the annota-
tion methods to large databases. Consequently, we usd dgdtaand easy to compute images descriptors
that require very few computation resources. Our methodtcocis a latent space, using Canonical Cor-
relation Analysis, where text and image features are higblyelated. It is extremely fast, it runs in less
that a second both for training and for testing on a stand& 21z PC, and makes annotation effective
and efficient in order to handle large scale databases.
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