

Application of Axiomatic Approaches to Crosslanguage Retrieval Overview of the Know-Center System for Robust WSD @ CLEF2009



## http://www.know-center.at



© Know-Center – funded by the Austrian COMET Program

Competence Centers for Excellent Technologies Kn w

## Introduction Overview

### System Overview

Index Types

Index Fields

Query Construction

**Ranking Functions** 

### System Performance

Baseline Performance Impact of WSD Information Impact of Translation Kn w



### Document Index

Created using the  $\sim$ 170k documents

Contains **WSD information** (Synonyms & Synset-IDs)

### Multilingual Index

Aligned documents Used for translation of (query) terms One multilingual index per corpus

Kn w 3

## System Overview / Index Fields Document Index

### Build using article body

Headline not used

#### 👽 Token Fields

Word-Form

Lemma

Stems (Snowball Stemmer)

### WSD Fields

Synonyms of top ranked synset

ID of top ranked synset

### Co-Occurrence Field

Build using the stemmed terms CondPMI for term-term weights

| Field Name         | Number of Terms |
|--------------------|-----------------|
| Word-Form          | 512725          |
| Lemma              | 459326          |
| Stems              | 403759          |
| Synonyms (NUS)     | 57840           |
| Synonyms (UBC)     | 56013           |
| Synset IDs (NUS)   | 55279           |
| Synset IDs (UBC)   | 53292           |
| Cooccurrence Terms | 256306          |

 $S_{CondPMI}(w_i, w_j) = \frac{\log_2 \frac{P(w_j|w_i)}{P(w_j)}}{\log_2(\frac{1}{P(w_j)})}$ 



4

## System Overview / Index Fields Multilingual Index

### Build using multilingual corpora

### Document aligned: Wikipedia

Exploit cross-lingual links between articles

### Sentence aligned: Europarl

Proceedings of the European Parliament

### Translation

Search in *source language* 

Collect top-n results in *target language* (n = 50)

*Extract terms* and select top-m as translation (m = 2)

|           | Entries | English Terms | Spanish Terms |
|-----------|---------|---------------|---------------|
| Wikipedia | 2896802 | 5139238       | 1365908       |
| Europarl  | 1304243 | 88370         | 146537        |

## Know



Pluggable weighting scheme for term translation

Keyword Extraction

Use the term with the highest **TFIDF weight** 

$$w_i^{TFIDF} = log(\frac{N}{docFreq_i + 1} + 1) * \sum_j^D score_j$$

### Query Reconstruction

Aggregation of differences between expected and observed score

$$w_i^{reconstruction} = \frac{1}{\sum_j^D |tf_{i,j} * \log(\frac{N}{docFreq_i+1} + 1) - score_j| + 1}$$

6

Know

## System Overview Query Construction

### Using the Title and Description part of the topics

Description terms did get lower weight (0.25)

No blind relevance feedback

Only global QE methods

### Incorporate WSD information via Query Expansion

The synonyms of the top scores sense are used

The synset-id of the top sense

### Co-occurrence terms were also added via QE

Add co-occurring terms to query (2 size of query)

Co-occurrence reflects all semantic relatedness (hypernyms, meronyms, ...)





- Pluggable retrieval function for scoring
- Default Lucene TFIDF boolean query
- Lucene Disjunction Max query
- Variant of the BM25 weighting function

$$S_{BM25}(Q,D) = \sum_{t \in Q \cap D} \frac{tf_{t,D}}{k_1((1-b) + b * \frac{docLength_D}{averageDocLength}) + tf_{t,D}} * \log \frac{N - docFreq_t + 0.5}{docFreq_t + 0.5}$$

### Axiomatic retrieval function

Famlily of weighting function derived using an axiomatic approach

$$S_{Axiomatic}(Q,D) = \sum_{t \in Q \cap D} \left(\frac{N}{docFreq_t}\right)^{\alpha} * \frac{tf_{t,D}}{tf_{t,D} + 0.5 + \beta \frac{docLength_D}{averageDocLength}}$$





### Comparison of the token features

Best performance using *stems* 

| Token Feature    | MAP    | GMAP   |
|------------------|--------|--------|
| Word-Form        | 0.3510 | 0.1471 |
| Lemma            | 0.3911 | 0.1771 |
| $\mathbf{Stems}$ | 0.4022 | 0.1805 |

### Comparison of the retrieval functions

Best performance using axiomatic approach

| Retrieval Function | MAP    | GMAP   | Notes                                    |
|--------------------|--------|--------|------------------------------------------|
| TFIDF1             | 0.3083 | 0.1182 | Default Lucene Boolean Query             |
| TFIDF2             | 0.3313 | 0.1331 | Lucene Disjunction Max Query             |
| BM25               | 0.3889 | 0.1566 | Using $k_1 = 0.8$ and $b = 0.5$          |
| Axiomatic          | 0.4022 | 0.1805 | Using $\alpha = 0.25$ and $\beta = 0.75$ |

## System Performance / Monolingual Performance Impact of WSD

### Comparison of the query expansion strategy

WSD information does improve the monolingual retrieval

Query expansion using co-occurrence does out-perform pure synonym approach

| Query Expansion          | MAP    | $\operatorname{GMAP}$ | $\Delta MAP$ | $\Delta \text{GMAP}$ |
|--------------------------|--------|-----------------------|--------------|----------------------|
| -                        | 0.4022 | 0.1805                | -            | -                    |
| Synonyms (NUS)           | 0.4061 | 0.1849                | 0.97%        | 2.44%                |
| Synonyms (UBC)           | 0.4036 | 0.1837                | 0.35%        | 1.77%                |
| Synset IDs $(NUS)$       | 0.4047 | 0.1856                | 0.62%        | 2.85%                |
| Synset IDs (UBC)         | 0.4070 | 0.1869                | 1.19%        | 3.55%                |
| Cooccurrence Terms       | 0.4170 | 0.1864                | 3.68%        | 3.27%                |
| Cooccurrence + WSD (NUS) | 0.4222 | 0.1947                | 1.25%        | 4.45%                |
| Cooccurrence + WSD (UBC) | 0.4212 | 0.1942                | 1.01%        | 4.18%                |



# System Performance / Bilingual Performance Bilingual



### Comparison of the system with query translation

Improvements of WSD information smaller than for monolingual

| Query Expansion               | MAP    | $\operatorname{GMAP}$ | $\Delta MAP$ | $\Delta \text{GMAP}$ |
|-------------------------------|--------|-----------------------|--------------|----------------------|
| -                             | 0.2885 | 0.0746                | -            | _                    |
| Synonyms (1st)                | 0.2923 | 0.0762                | 1.32%        | 2.14%                |
| Synset IDs $(1st)$            | 0.2933 | 0.0773                | 1.55%        | 3.62%                |
| Cooccurrence Terms            | 0.2917 | 0.0718                | 1.17%        | -3.75%               |
| $C_{ooccurrence} + WSD (1st)$ | 0.2982 | 0.0746                | 2.32%        | 3.90%                |

### Influence of the query translation

Pronounced difference between keyword extraction for the spanish topics

| Language & Translation Function | MAP    | GMAP   |
|---------------------------------|--------|--------|
| English TFIDF                   | 0.3979 | 0.1570 |
| Spanish TFIDF                   | 0.2885 | 0.0746 |
| English Reconstruction          | 0.3942 | 0.1618 |
| Spanish Reconstruction          | 0.2086 | 0.0379 |



- Axiomatic based retrieval model does provide robust performance Even better performance than BM25
- WSD information does show improvements in the monolingual task

Improvement of up to 3.5% for GMAP

WSD information does improve performance even if applied additionally to an exisisting QE technique

Improvements of more than 3% for MAP and GMAP

WSD information does also increase the performance in the bilingual task

Improvements of WSD information smaller than for monolingual





Roman Kern Knowledge Relationship Discovery Know-Center Graz Inffeldgasse 21a 8020 Graz

> +43 316 873 66 rkern@know-center.at www.know-center.at

1

Know



Comparison of the system with a combination of the corpus used for translation

Performance of Wikipedia and Europarl about the same, but combination works best

| Translation           | MAP    | GMAP   |
|-----------------------|--------|--------|
| Wikipedia             | 0.2373 | 0.0457 |
| Europarl              | 0.2454 | 0.0478 |
| $\operatorname{Both}$ | 0.2884 | 0.0746 |

1