AnswerFinder at QAst 2007: Named Entity
Recognition for QA on Speech Transcripts

Diego Molla, Steve Cassidy, Menno van Zaanen
Macquarie University
{diego,steve,menno}@ics.mq.edu.au

Abstract

Macquarie University’s contribution to the QAst track of CLEF is centered on a study
of Named Entity (NE) recognition on speech transcripts, and how such NE recognition
impacts on the accuracy of the final question answering system. We have ported
AFNER, the NE recogniser of the AnswerFinder question-answering project, to the
types of answer types expected in the QAst track. AFNER uses a combination of
regular expressions, lists of names (gazetteers) and machine learning. The machine
learning component is a Maximum Entropy classifier and was trained on a development
set of the AMI corpus. Problems with scalability of the system and errors of the
extracted annotation lead to relatively poor performance in general, though the system
was second (out of three participants) in one of the QAst subtasks.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.4 Systems and Software; 1.2.7 [Natural Language Process-
ing]: Text Analysis

General Terms

Measurement, Performance, Experimentation

Keywords

Question answering, Speech transcripts, Named Entity Recognition

1 Introduction

AnswerFinder is a question answering system that is being developed focusing on shallow semantic
representations of questions and text [4, 5]. The underlying idea is that these semantic representa-
tions reduce the impact of paraphrases (different wordings of the same information). Overall, the
system uses symbolic algorithms to find exact answers to questions in large document collections.

The design and implementation of the AnswerFinder system has been driven by requirements
that the system should be easy to configure, extend, and, therefore, port to new domains. To
measure the success of the implementation of AnswerFinder in these respects, we decided to
participate in the QAst competition. The task in this competition is different from that for
which AnswerFinder was originally designed. Applying the system to a new task would illustrate
potential problems with respect to configurability and extensibility.

In addition, in our contribution we focused on the localisation of AFNER, our Named Entity
Recogniser (NER), for speech transcripts and its application for Question Answering. Named

Entity (NE) recognition is the task of finding instances of specific types of entities in free text.
This module is typically one of the most important sources of possible answers available to QA
systems and therefore an improvement on its accuracy should result on an improvement of the
accuracy of the complete QA system.

The AFNER system, just like the AnswerFinder system, was designed with flexibility in mind.
Since the properties of the NE recognition task in this competition are quite different in several
respects to that of which AFNER was originally designed, the QAst competition also allowed
us to measure the success of our AFNER implementation according to the configurability and
extensibility criteria.

2 Question Answering for Speech Transcripts

The task of Text-Based Question Answering (TBQA) has been very active during the last decade,
mostly thanks to the Question Answering track of the Text REtrieval Conference (TREC) [9]. The
kinds of questions being asked range from fact-based questions (also known as factoid questions)
to questions whose answer is a list of facts, or definitions. The methods and techniques used have
converged to a prototypical, pipeline-based architecture like the one we will describe here, and
only recently the task has been diversified to more complex tasks such as TREC’s QA task of
complex interactive question answering [2] or the Document Understanding Conference (DUC)’s
track of query-driven summarisation [3].

The present CLEF pilot track QAst presents an interesting and challenging new application of
question answering, and in this contribution we have attempted to re-use as much as we could of
AnswerFinder, a TBQA system that is designed for configurability, flexibility and portability to
other domains. Part of our interest in participating in QAst was to test AnswerFinder’s portability.

2.1 AnswerFinder

The AnswerFinder question answering system is essentially a framework consisting of several
phases that work in a sequential manner. For each of the phases, a specific algorithm has to be
selected to create a particular instantiation of the framework. The aim of each of the phases is
to reduce the amount of data the system has to handle from then on. This allows later phases to
perform computationally more expensive operations on the remaining data.

Document
Collection
Y ___
Question I Document !
[Selection _|
| 1___
I Question | I Sentence |
ILAnalysiS : | Selection :
S S N
Question _)! Answer | Final
Type I Selection :_) Answer(s)

Figure 1: AnswerFinder system overview

Figure 1 provides an overview of the AnswerFinder framework. The first phase is a document
retrieval phase that selects relevant documents. AnswerFinder was developed to work on large
document collections and this phase typically reduces a great amount of text that will be handled
in subsequent steps.

Next is the sentence selection phase. This can actually be a sequence of steps, each of which
selects a subset of sentences from the relevant documents selected in the previous phase. During

sentence selection, all sentences that are still left (e.g. all sentences in the selected documents in the
first step) are scored against the question using a relevance metric. The most relevant sentences
according to this metric are kept for further processing.

After sentence selection, the remaining sentences are passed to the answer selection phase. The
answer selection phase aims at selecting the best of the possible answers to return to the user.
In the experiments described here, the list of possible answers is provided by a NER.! Thus, the
question is analysed, providing information about the kind of answer that is required. From the
possible answers, those that match the type of answer (required by the question) are selected and
scored.

Finally, the best answer is returned to the user. Best answer in this context is considered to
be the answer that has both the highest score and an answer type that matches the question, or
simply the answer with the highest score if none of the possible answers fits the expected answer

type.

2.2 Applying AnswerFinder to Speech Transcripts

Question answering on speech transcripts introduces specific challenges compared to TBQA due to
the nature of the genre and the process of transcription. AnswerFinder has been initially developed
to work on news articles. News articles are typically well-written pieces of text. Analysing the
documents in the QAst competition, it is clear that speech transcripts are different. For example:

e There are frequent false starts and sentences that are interrupted in the discourse.

e There are filling words that usually do not appear in free text (and in particular news text),
such as “er”, “uh”, etc. In our experiments, this is particularly problematic when these
words appear inside a named entity, e.g. “Rufford, um, Sanatorium, that’s right”.

e The grammatical structure of the transcription does not conform with that of free text.
Consequently most tools, such as parsers and chunkers, which would normally be used in
specific AnswerFinder phases, produce very poor results.

e If the transcript is an automatic transcript (produced by a speech recogniser) there are
errors of transcription and missing information, most notably punctuation characters and
capitalised characters. This information is used in many phases of AnswerFinder to answer
questions on news data.

e When using a corpus annotated with named entities, the density of named entities in free
speech is much smaller than in usual corpora.

Many of the above features make it difficult to do traditional linguistic processing such as
parsing and semantic interpretation. For this reason, many of the instantiations of the phases
we have implemented, which typically use complex linguistic processing (which are described in
[5]) would not perform well. We consequently decided not to use AnswerFinder’s syntactic and
graph-semantic information. Instead we focused on attempting to increase the accuracy of the
task of recognition of named entities. Thus, the question answering method used for QAst is
entirely based on the task of finding and selecting the right entities.

In particular, the AnswerFinder framework that generated the QAst 2007 results consists of
the following instantiations of the phases:

e The document selection component returns the full list of documents provided for the com-
plete list of questions. The total number of documents is fairly small and therefore the
other components of AF are able to handle all documents. We do not attempt to rank the
documents in any way.

1In general, some sentence selection methods have the ability to generate possible answers that can also be
selected during the answer selection phase. However, these algorithms are not used in these experiments as will be
discussed in section 2.2.

e The sentence selection component is based on the word overlap between the question and
the document sentences. This metric counts the number of words that can be found in both
question and sentence after removing stop words. A simple sentence splitter method is used,
which relies on the existence of punctuation marks when available, or on speech turns. Only
sentences that contain NEs of the required type are considered.

e The question classification component is based on a decision list of hand-constructed patterns
of regular expressions.

e The answer extraction component selects five NEs that are of the expected answer type and
have the highest scores. If four or less NEs are found, then a NIL answer is returned as
an option after presenting all found NEs. If no NEs of the expected type are found at all,
the returned answer is NIL. The score of a NE is the sum of the individual scores of each
occurrence of a NE. The individual score of a NE is the confidence of AFNER to label the
answer candidate with the particular NE label.

3 AFNER

Within the AnswerFinder project, we recently incorporated a purpose-built NER, called AFNER [6].
This NER has been specifically designed for the task of TBQA. AFNER differs from other NERs
in that it aims to increase recall of recognition of entities, at the expense of a possible loss of pre-
cision [6, 8]. Crucially, it allows the allocation of multiple tags to the same string, thus handling
the case of ambiguous entities or difficult entities by not committing to a single tag. The rationale
is that we do not want to weed out the right answer at this stage. Instead we let the final answer
extraction mechanism make the final decision about what is a good answer.

AFNER is ultimately based on machine learning. We use a maximum entropy classifier, and
the implementation of this classifier is adapted from Franz Josef Och’s YASMET?. Obviously, the
selection of the features used in the classifier is very important.

3.1 Features

The features used by AFNER combine three kinds of information: regular expressions, gazetteers,
and properties internal and external to the token.

The regular expressions used in AFNER are manually created and are useful for identifying
strings that match patterns that are characteristic to entity types such as dates, times, percentages,
and monetary expressions. These types of named entities are relatively standardised and therefore
easy to find with high precision. However, the range of entities that can be discovered using regular
expressions is limited. Matching a particular regular expression is a key feature used in identifying
entities of these particular types.

Gazetteers are useful for finding commonly referenced entities such as names. If one or more
words are found in one of the gazetteers, which are lists of names, locations, etc., then it is likely
that the expression is of the type indicated by the list. However, this this is not always the case.
For example, common person names may also be regular words (Smith, Baker). We use gazetteers
as additional features in the classifier to increase the likelihood of these kinds of named entities.
It also allows the classifier to use other features that combined may be more determinant for the
categorisation of a specific token in particular entities. AFNER, uses three lists (locations, person
names, and organisations), with a total of about 55,000 entries.

Finally, there are three types of features that relate to specific aspects of the separate to-
kens. Firstly, we identify features that illustrate internal token properties including capitalisation,
alpha/numeric information, etc. Some specific features are listed in Table 1.

Secondly, AFNER incorporates some contextual features. These are features that concentrate
on the token in the surrounding text, or relate a token to tokens in surrounding text. These features

2http://www.fjoch.com/YASMET . html

are implemented through a set of regular expressions that are matched against neighbouring tokens
within a context window of the token under consideration. When a regular expression matches
the context, this is recorded. These regular expressions detect patterns such as whether the
neighbouring token is made of two digits, or whether it is a currency name. Features that consider
the class assigned to the previous tokens and all of its class probabilities are also part of this type
of feature.

Thirdly, there is a set of features that measure global information of the tokens. These features
are mainly inspired on features described by [1]. Currently AFNER only checks whether a token
is always capitalised in a passage of text.

Regular Expressions Specific patterns for dates, times, etc

FoundInList The token is a member of a gazetteer

InitCaps The first letter is a capital letter

AllCaps The entire word is capitalised

MixedCaps The word contains upper case and lower case letters

IsSentEnd The token is an end of sentence character

InitCapPeriod Starts with capital letter and ends with period

OneCap The word is a single capitalised letter

ContainDigit The word contains a digit

NumberString The word is a number word (‘one’, ‘thousand’, etc.)

PrepPreceded The word is preceded by a preposition (in a window of 4 tokens)

PrevClass The class assigned to the previous token

ProbClass The probability assigned to a particular class in the previous token
’ AlwaysCapped The token is capitalised every time it appears ‘

Table 1: Features used in AFNER

3.2 General Method

The features described in the previous section are used in a maximum entropy classifier which for
each token and for each category computes the probability of the token belonging to the category.
Categories in this case are the named entity types prepended with ‘B’ and ‘T’ (indicating whether
the token is at the beginning or inside a NE respectively), and a general ‘OUT’ category for tokens
not in any entity. So for n named entities, n % 2 4+ 1 categories are used.

The classifier returns a list of tags for each token ordered based on probability. We select
only those tags that have a probability of more than half of the probability of the next tag in
order. This initial threshold already removes tags that have a low probability. However, we also
only allow a certain maximum number of tags to pass through. Preliminary experiments revealed
that often the top two or three tag probabilities have similar values, but that tags lower down
the list still pass the initial threshold, while they are not correct. By setting a threshold that
limits the maximum number of tags to be returned we also filter those out. The results presented
in this paper are generated by setting the second threshold to allow two tags per token. Initial
experiments showed that this increases recall considerably. Allowing more tags increases recall
only slightly while decreasing precision considerably.

AFNER assigns multiple tags to tokens. By doing this, we aim for high recall. The presence of
multiple tags also means that NEs can be nested, meaning that NEs may exist within other NEs.

Once tokens are assigned tags, they are combined to produce the final list of NEs. Each token
that has a ‘B’ tag assigned to it is considered the beginning of a new NE of that type. All ‘I’ tags
continue a NE if the previous token already had either a ‘B’ or ‘I’ tag of the same type assigned
to it. If there was no such tag assigned to the previous token, the ‘I’ tag is taken to be a ‘B’ tag
and indicates the start of a new NE of that type. Additionally, if a ‘B’ tag is preceded by a token
with an ‘T’ tag, it will be taken to be both as a separate entity (with the previous entity ending)
and as a continuation of the previous token.

Class Type
ENAMEX Organization
Person
Location
TIMEX Date
Time
NUMEX Money
Percent

Table 2: Entity types used in the original version of AFNER

The result of this algorithm is an assignment of named entities to the sequence of tags where
the named entities may overlap, as is illustrated in Figure 2.

BPER ILOC
IPER BLOC BLOC BDATE
BLOC IPER ouT | ouT IPER OUT | IDATE | OUT
Jack London lived n Oakland mn 1885
PERSON | LOCATION LOCATION DATE
PERSON PERSON
LOCATION

Figure 2: Named entities as multiple labels. The token-based labels appear above the words. The
final NE labels appear below the words.

To compute the probability of a sequence of tokens (with corresponding named entity types),
we use the geometric mean. This is done to normalise over the length of the named entities. The
computation works as follows. Take P; to be the probability of token i and P; ., the probability of
the entire list of tokens (from begin to end). The geometric mean of the probabilities is computed
as:

og P;
i=1 *

P.,=c¢ "

3.3 Adaptation of AFNER to QAst

AFNER has been developed to work on news data, and as such, we had to modify parts of the
system to allow it to be used in the QAst task. The first adaptation of AFNER is the selection of
NE types. Originally AFNER focused on a limited set of entities similar to those defined in the
Message Understanding Conferences [7], and listed in Table 2.

For QAst we used a set of entity types that closely resembles the kinds of answers expected,
as described by the QAst 2007 specification. The types used by the modified AFNER are listed
in Table 3.

The regular expressions that are used in AFNER to find MUC-type named entities were ex-
tended to cover the new types of entities. This process did not require much additional work,
other than adding a few common names of shapes and colours. The lists of names that was part
of the initial AFNER was left untouched.

The general machine learning mechanism was left unmodified, and the set of features was also
left untouched. The only difference was the choice of training corpus. We mapped the annotated
entities of the BBN corpus that we had used previously, and added a fragment of the development
set of the AMI corpus.

However, due to problems of scalability during training (the intermediate files produced were
very large due to the increased number of classes the classifier can return) we were not able to

Class Type # in BBN # in AMI
ENAMEX Language 9 0
Location 2,468 16
Organization 4,421 27
Person 2,149 196
System 0 448
Color 0 283
Shape 0 147
Material 0 267
TIMEX Date 3,006 9
Time 96 147
NUMEX Measure 2,568 293
Cardinal 0 646

Table 3: Named Entities used for QAst. The numbers of entities listed in the two last columns
refer to the actual training set (a subset of BBN and AMI).

Run Questions | Correct Answers | MRR | Accuracy
cltl-t1 98 17.35% | 9.98% 6.12%
clt2-t1 98 16.33% | 9.44% 5.10%
clt1-t2 98 14.29% | 7.16% 3.06%
clt2-t2 98 12.24% | 5.88% 2.04%
clt1-t3 96 35.42% | 24.51% 16.67%
clt2-t3 96 33.33% | 26.39% 20.83%
cltl-t4 93 19.35% | 11.24% 6.45%
clt2-t4 93 22.58% | 14.10% 8.60%

Table 4: Results of the CLEF runs

use all the files. For these experiments we used 26 documents from the AMI corpus and 16 from
the BBN corpus. Table 3 shows the total number of entities annotated in the BBN and the AMI
parts of the training set. The entity types of each kind of corpus complement each other, though
some of the entity types had few instances in the corpora, most notably, the type Language only
occurred nine times.

We decided to use the BBN corpus to complement the annotations of AMI because some entity
types were very scarce in AMI but very common in BBN. Also, the entity types annotated in
AMI are not the sort of types that would typically be annotated as named entities. For example,
the entity type “Person” would have instances like industrial designer. Furthermore, the quality
of some of the annotations of the AMI corpus was very bad, to the point that, for example, the
entity type “Color” would have instances like fancy or wh, and even just punctuation marks such
as commas or periods. The later errors of annotation make us suspect that perhaps the process
to extract the entities from the AMI corpus, which was very laborious, had one mistake or two.
We plan to revise the full process of extraction and re-do the experiments.

4 Results

We participated in all the QAst tasks and provided two runs per task. The first run used the full
AFNER system, whereas the second run used a version of AFNER that had the machine learning
component disabled. The results are shown in Table 4.

The results returned by CLEF indicate, as expected, comparatively poor performance with
respect to the other participants. We are pleased to notice, however, that the results of task 3 are
second best (from a group of three participants). Task 3 is the task that used the AMI transcripts
and it was the task that we used to develop and fine-tune the system. The other tasks 1, 2, and 4

Run Questions | Correct Answers | MRR | Accuracy
cltl-tl 88 12.50% | 8.56% 6.82%
clt2-t1 88 11.36% | 7.95% 5.68%
clt1-t2 87 5.75% | 4.06% 3.45%
clt2-t2 87 3.45% | 2.87% 2.30%
clt1-t3 86 29.07% | 22.33% 18.60%
clt2-t3 86 25.58% | 22.38% 19.77%
cltl-t4 79 6.33% | 3.90% 2.53%
clt2-t4 78 8.97% | 7.05% 5.13%

Table 5: Results of non-NIL questions

simply used the same settings. We are particularly pleased to learn that the results of task 3 are
higher than the results we obtained during development time. This is possibly due to the nature
of our experiments, since we automatically applied the answer patterns to the answers found, and
it could have been the case that correct answers which happened not to match the patterns were
automatically marked as incorrect in our experiments. The evaluations carried by CLEF used
human judges so they would be able to detect correct answers that had an unusual format.

Our preliminary experiments indicated that the machine learning component was not helping
the question answering process at all. The CLEF results show some increase of correct answers
in the first run (with machine learning) in the tasks based on the CHIL corpus (tasks 1 and 2)
but a decrease of correct answers in the tasks based on the AMI corpus (tasks 3 and 4). Our
preliminary experiments used the AMI corpus only, and therefore the results are consistent with
our experiments. Given the poor overall results with the CHIL corpus it is reasonable to suspect
that the patterns and lists do not do well with the CHIL corpus and therefore the machine learning
component can help. The patterns and lists were not fine-tuned either for CHIL or for AMI, they
were simply the ones we used for the original, news-based BBN text corpus. We will investigate
the relative impact of the patterns and lists on one side and the machine learning component on
the other side for the speech transcripts.

Our method to handle NIL questions is simple yet relatively effective to the point that correct
NIL answers were a significant part of the correct answers. Task 4 in particular, which has 15 NIL
questions, results in a halved MRR (from 14.10% down to 7.05% in our second run) when all NIL
questions are removed. Still, task 3 has relatively good results after removing all NIL questions
(from 26.39% down to 22.38% in our second run). The results of the non-NIL questions are shown
in Table 5.

5 Conclusions and Further Work

In our contribution to QAst we reused as much as we could of AnswerFinder, our question an-
swering system, and AFNER, our Named Entity recogniser. Due to the nature of the speech
corpus we simplified the processing done by AnswerFinder and made it rely more heavily on the
entities found by AFNER. The whole experiment showed that both AnswerFinder and AFNER
are flexible and can be adapted easily to new tasks.

The small training corpus and the presence of annotation errors in the AMI corpus made the
machine learning component of AFNER ineffective. An immediate line of further research is to
investigate the cause of the errors, and correct them. Other lines of research are:

e Revise the machine learning component of AFNER, possibly replace it with another more
scalable method, so that larger training corpora can be used.

e Review the features used for identifying the entities. Most of the current features rely on
information about capitalisation, presence of digits, or punctuation marks but none of those
are available on speech transcripts.

e Use additional corpora. There are a few corpora of speech transcriptions available with
annotations of named entities that we could use. Among the options is the corpus of speech
transcripts within the SQUAD project with the UK Data Archive at the University of Ed-
inburgh.

References

1]

2]

[3]

Haoi Leong Chieu and Hwee Tou Ng. Named entity recognition: A maximum entropy approach
using global information. In Proceedings COLING 2002, 2002.

Hoa Dang and Jimmy Lin. Different structures for evaluating answers to complex questions:
Pyramids won’t topple, and neither will human assessors. In Proceedings ACL, 2007.

Hoa Tran Dang. Duc 2005: Evaluation of question-focused summarization systems. In Proceed-
ings of the Workshop on Task-Focused Summarization and Question Answering, pages 48-55,
Sydney, 2006. Association for Computational Linguistics.

Diego Molld and Menno van Zaanen. Answerfinder at TREC 2005. In Ellen M. Voorhees and
Lori P. Buckland, editors, Proc. TREC 2005. NIST, 2006.

Diego Molla, Menno van Zaanen, and Luiz Pizzato. Answerfinder at trec 2006. In Ellen M.
Voorhees and Lori P. Buckland, editors, Proceedings TREC 20006, page 8 pages, 2007.

Diego Moll4, Menno van Zaanen, and Luiz A.S. Pizzato. Named entity recognition for question
answering. In Proceedings ALTW 2006, page 8 pages, 2006.

Beth M. Sundheim. Overview of results of the MUC-6 evaluation. In Proc. Sixth Message
Understanding Conference MUC-6. Morgan Kaufmann Publishers, Inc., 1995.

Menno van Zaanen and Diego Molld. A named entity recogniser for question answering. In
Proceedings PACLING 2007, 2007.

Ellen M. Voorhees. The TREC-8 question answering track report. In Ellen M. Voorhees
and Donna K. Harman, editors, Proc. TREC-8, number 500-246 in NIST Special Publication.
NIST, 1999.

