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Abstract

In the 2006 ImageCLEF cross-language image retrieval track, the MedIC/CISMeF
group participated at the two medical-related tasks: the automatic annotation task and
the multilingual image retrieval task. For the first task we submitted four runs based
on supervised classification of combined texture and statistical image representations,
the best result being the fourth rank at only 1% of the winner. The architecture
proposed for the second task is reposing on textual-retrieval using terms derived from
the MeSH thesaurus, combined with ranking by visual similarity. Due to technical and
practical difficulties, the only run we were able to submit was incomplete, resulting in
a modest result in the pools. Therefore, the actual capacity of the proposed retrieval
architecture could not be evaluated.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval

Keywords

Content-based image retrieval, image categorization, visual/textual retrieval, classification, ma-
chine learning

1 Introduction

ImageCLEF cross-language image retrieval track was established in 2003 as part of the Cross
Language Evaluation Forum (CLEF), a benchmarking multilingual information retrieval campaign
held annually since 2000.

The CISMeF project1 (French acronym for Catalog and Index of French-language health re-
sources) [1] is a quality-controlled subject gateway initiated by the Rouen University Hospital.
The objective is to describe and index the main French-language health resources (documents on
the web) to assist the users (i.e. health professionals, students or general public) in their search
for high quality medical information available on the Internet.

The CISMeF team currently is developing an image information extraction and annotation
module, named MedIC (i.e. Medical Image Categorization), to allow direct access to images
extracted from health-documents.

For the 2006 edition of ImageCLEF, we used the MedIC module to participate at the two tasks
involving medical images: the medical image annotation task and the multilingual medical image

1http://www.cismef.org



retrieval task. We used different approaches for each of the two tasks, following their specificity and
objectives. Thus, an approach based on supervised classification of image visual representations
was used for the annotation task, and an approach reposing on bilingual (i.e. English-French)
MeSH term text-retrieval combined with visual image similarity for the retrieval task.

2 Medical Image Annotation Task

When searching for images in non-annotated databases, medical image categorization and anno-
tation can be very useful. Generally the first step is to define the categories (i.e. classes of images)
you need to ”recognize” and to select a set of image prototypes for each category. Then, each
new/unknown image is projected in one of the categories (using some form of image similarity),
and thus annotated with the identifier of the category (or the multilingual terms that can be as-
sociated to each category). One of the major disadvantages of this approach is the dependence on
manually annotated prototypes for each of the categories, especially when treating domains as vast
and rich as medicine. A second weakness is its difficulty to treat ”unknown” images, an additional
category being simply too big to create (basically it should contain everything else). Neverthe-
less, medical image annotation proved to be significantly accurate when an image sub-domain is
considered, and image categories are well defined.

The image annotation task of ImageCLEF 2006 is using an image dataset provided by the
IRMA project, consisting of 10000 fully annotated x-rays taken randomly from medical routine
and 1000 x-rays for which classification labels are not available to the participants. The images
are subdivided in 116 categories (classes), hierarchically organized according to image modality
(x-ray, plain radiography), body orientation, body region, and biological system captured. The
annotated dataset is intended to be used for training (9000 images) and validation - system
tuning by parameter optimization (1000 images) and the 1000 un-annotated images for tests.
Each approach/run is evaluated according to the annotation of the test set.

Our approach is based on the supervised classification of combined both local and global texture
and statistic image representations. Because the resulted number of features can be significant
compared to the available data samples (raising estimation problems for the classifiers) we added
a dimensionality reduction phase.

2.1 Image Resizing, Global and Local Representations

For these experiments, all images are resized to a fixed dimension of 256×256 pixels. Even though
this simplifies several aspects of the problem (e.g. simpler generation of texture filters, normal-
ization of the resulted representation size), we want to point out that loosing the original image
aspect ratio introduces some structural and textural deformations, which could result in poor per-
formances when dealing, for example, with image fragments. However, from our observations (in
general) and after the examination of the IRMA database we concluded that, most of the times,
images of the same category have the same aspect ratio, and thus will finally be deformed in the
same way.

The image features can be extracted both globally and from local representations. The global
features are extracted at the image level and have the advantage of being less sensible of small
local variations, noise and/or geometrical transformations (e.g. especially rotation). However
due to the importance of details in medical imaging, local features are of great importance when
representing the medical image content. To take in consideration the spatial disposition of features
inside the images we choose to also use a local representation obtained by splitting the original
image in 16 equal sub-blocks (of 64x64 pixels). This way each image is represented by a vector of
16 blocks, and from each block features are extracted to describe its content.



2.2 Feature Extraction

The x-rays used for the annotation task are by nature acquired in gray-levels, and electronically
digitized using 8bbp (8 bit per pixel; 28 = 256 gray levels). This renders some of the most
successfully used (i.e. for image representation) features, like the color, inapplicable here. The
texture based features combined with statistical gray-level measures proved to be a well suited
global descriptor for medical images [3].

For describing image texture we employed several very different approaches:

• (COOC) In [5] the co-occurrence matrix is used to explore the gray-level spatial dependence
of the texture. We compute 4 co-occurrence matrixes, one on each direction (horizontal,
vertical and diagonals), after a 64 gray-level quantification. From each matrix, 4 features
are extracted: energy, entropy, contrast and homogeneity, producing a 16 feature vector.

• (DF) [16] made the assumption that textures are fractals for a certain range of magnifications.
Fractal dimension is not an integer in contrast to the dimension in Euclidean geometry, but
a number between 2 and 3. The more the texture is smooth (respectively rough), the more
the fractal dimension is close to 2 (respectively 3). We used a modified box-counting texture
analysis based on the probability density function described by [7]. The computing of the
fractal dimension generates a single feature.

• (GB) The belief that simple cells in the human visual cortex can be modelled by Gabor
functions [11] lead to the development of texture features extracted from response to Gabor
filters [9]. The aim is to discriminate coarse textures which have spectral energy concentrated
at low spatial frequency, from fine textures which have larger concentrations at high spatial
frequency. The Gabor filters computed at λ = 3 scales and φ = 4 orientations, produce a 12
level decomposition from which we extract the mean and standard deviation, resulting a 24
feature vector.

• (DCT) The discrete cosine transform is popular in image coding due to good performance
and fast implementation [17]. [13, 14, 15] suggest using a 3 × 3 DCT for texture feature
extraction. They furthermore suggest excluding the low-frequency component of the DCT,
thus yielding 8 features.

• (RL) Galloway has proposed a run-length-based technique, which calculates characteristic
textural features from gray-level run lengths in different image directions [4]. A total of 14
features is derived.

• (Laws) Laws has suggested a set convolution masks for feature extraction [8]. Using the
Laws filter masks for textural energy 28 features are resulted.

• (MSAR) [10] proposed the classification of color textures using Multispectral Simultaneous
Autoregressive Model (MSAR). The basic idea of a simultaneous autoregressive(SAR) model
is to express a gray level of a pixel as a function of the gray levels in its neighborhood. The
related model parameters for one image are calculated using a least squares technique and
are used as textural features. This approach is similar to the Markov random fields described
in [6]. From this 24 features are resulting.

In addition we used features derived from gray-level statistical measures (STAT): different
estimations of the first order (mean, median and mode), second order (variance and l2 norm),
third and forth order (skewness and kurtosis) moments, thus obtaining a 7 feature vector.

We choose to combine these descriptors because in previous experiments, using feature selection
algorithms, we pointed out their complementarity [3].



2.3 Dimensionality Reduction

A significant obstacle in machine learning problems is learning from few data samples in a high-
dimensional feature space. Unfortunately, most of the time, the number of data samples is given
by the context of the application and thus it is difficult to change. Furthermore, with the increase
of feature space dimensionality, it becomes impossible to estimate the probability density function
(PDF) with a reasonable amount of training data and (very important) computational burden.

In previous experiments [3] we used various feature selection techniques, and the best ratio
between (later) classification-accuracy and dimensionality-reduction are obtained with the Princi-
pal Component Analysis (PCA). PCA is a linear transformation that transforms the data into a
new coordinate system, the first new coordinate (called the first principal component) containing
the projection with the greatest variance of the data (from any projection possible), the second
new coordinate containing the second greatest variance and so on. The dimensionality reduction
is done retaining those characteristics of the dataset that contribute most to its variance, by keep-
ing lower-order principal components and ignoring higher-order ones. Generally, the low-order
components often contain the ”most important” aspects of the data.

For the ImageCLEF Annotation submissions, the experiments are conducted choosing enough
eigenvectors to account for either 95% or 97% of the variance in the original data (on the training
set).

We show in [3] that some of the texture features (cooccurence, fractal dimension and Gabor
wavelets) as well as the statistic features are complementary, all the ten feature selection meth-
ods used, selecting subsets of each feature set. The other texture features were considered and
implemented after the experiments described in [3], but they all behaved similarly, adding a small
amount of useful information to the image representation. However most of the information is
redundant, imposing some form of dimensionality reduction when using several descriptors.

2.4 Classification

For the projection of the test instances (i.e. the feature representation of each test image) in
corresponding categories the MedIC module uses several well known supervised classification ap-
proaches based on neural networks, decision trees, support vector methods and nearest-neighbor
architectures. In previous experiments [3, 2] we noted the best performances obtained by the
Support Vector Machine (SVM) classifier and the good performances/classification time of the
k-Nearest Neighbor approach. Given that in most application the classification task (especially
the learning phase) are expected to be conducted off-line (therefore making time a less important
issue), for the experiments of ImageCLEF 2006 we only submitted runs classified with SVM, as
they are expected to be better.

The SVM classification is conducted using different parameters for: kernel = polynomial, radial
basis function (RBF) and sigmoid, C = the cost parameter (1→ 104), γ = the gamma parameter
of each kernel (10−1 → 10−4) and d = the degree of the polynomial kernel (1 → 5). From these,
using the 1000 images validation dataset, the best parameters are selected: RBF kernel, γ = 10−2,
C=102.

2.5 Results

Twelve (12) groups participated to the Image Annotation Task of ImageCLEF 2006 and submit-
ted a total of 27 runs. The MedIC/CISMeF group submitted four runs. The parameters used for
each run are presented in Table 1. For all the four runs a combined descriptor COOC, DF, GB,
DCT, RL, Laws, MSAR, STAT is used. This represents (16+1+24+8+14+28+24+7) = 122 fea-
tures for each extracting window (according to section 2.2). The runs local+global PCA450 and
local+global PCA450 are considering one global extraction window and 16 local windows, and
thus have an original number of features equal to 122*17 = 2074. From these PCA450 uses a 97%
variance PCA to select 450 features, while using 95% produces 335 features. When considering



(a)

Run label Parameters
local global orig. PCA final

no.feat. var no.feat
local+global PCA450

√ √
2074 97% 450

local+global PCA335
√ √

2074 95% 335
local PCA333

√
× 1952 97% 333

local PCA150
√

× 1952 95% 150

(b)

error error rank
valid. test
12.3% 17.9% 7
12.7% 17.2% 4
12.6% 17.2% 5
15.9% 20.2% 10

Table 1: Run details

only the 16 local extraction windows, the original number of features becomes 122*16 = 1952 and
the PCA 97% and 95% are producing 333, respectively 150 features.

We obtained the forth rank but we situated third in the hierarchy of groups (only RWTHi62

and UFR3 obtained better scores) and also we obtained the third score (the second and third
rank having the same error rate: 16.7%). The best score was obtained by the RWTHi6 with
an error rate of 16.2%. That represents an improvement of 1% compared to our best score
(local+global PCA335), meaning that, compared to our 828 correctly annotated test images, 10
more images (not necessarily from those we missed) are correctly annotated.

However it is interesting to note that in all our experiments conducted on the validation set, we
obtained better results with on average 4.75%, reaching up to 87.7% correctly annotated validation
images (12.3% error rate) with (local+global PCA450). This indicates different difficulties for
the validation and test sets, and it will be interesting to compare if different systems reacted in
the same way.

Also, we note that equal test error rates are obtained for two runs: local+global PCA335 and
local PCA333, with reduced representations of comparable sizes. This could indicate that adding
the globally extracted features is redundant and the first information to be discarded, in the
case of local+global PCA335, by a more compacting 95% PCA transform (the same information
seems to be captured locally only and preserved with PCA 97%). An inspection of the list of
miss-annotated images for each run could show exactly if this assumption is true. Using the same
parameters, we obtain similar performances on the validation dataset.

3 Medical Retrieval Task

The multilingual medical image retrieval task uses an image dataset containing 50026 images from
four image collections: Casimage, MIR, PEIR, and PathoPIC. Each collection contains textual
annotation and case descriptions in XML format and various languages: Casimage (Fr-En), MIR
(En), PEIR (En), and PathoPIC (Ge-En).

There are 30 topics for ImageCLEFmed 2006, organized in three categories (with 10 topics for
each): Visual, Textual and Mixed. The categories are defined according to the type of approach
the participants are expected to use on each.

For the medical image retrieval task we submitted a single run using an approach based on
bilingual (i.e. English-French) MeSH term text-retrieval and visual image similarity.

3.1 MeSH dictionaries

The first step is the extraction of terms, from the textual annotations of the image collection. The
MedIC terms are originally based on the French version of the MeSH thesaurus (Medical Sub-
ject Headings 4) and they are reorganized in several image-dependent categories: image modality,

2Human Language Technology and Pattern Recognition Group of the RWTH Aachen University
3Chair of Pattern Recognition and Image Processing of the Albert-Ludwigs University of Freiburg
4http://www.nlm.nih.gov/mesh/



anatomical region, disease, technical acquisition parameters (i.e. view angle), image formats (i.e.
JPEG, PPT). Each category has its own dictionary, and contains for each MeSH term declina-
tions like inflected (plural) MeSH terms, synonyms of MeSH terms, inflected synonyms of MeSH
terms, abbreviations, initials and others. We can observe an extract of the modalities dictionary,
containing the ultrasound declinations (in French):

echographie,echographie.N+MeSH+TR+QMesh:fs
echographies,echographie.N+MeSH+TR+QMeSH:fp
ECHO,echographie.N+MeSH+TR+QMeSH
us,echographie.N+MeSH+TR+QMeSH
ultrasonographie,echographie.N+MeSH+TR+QMeSH:fs
ultrasonographies,echographie.N+MeSH+TR+QMeSH:fp

The French dictionaries were created by the CISMeF team for experiments on automatic textual
indexation, of health-resources (i.e. medical documents) in French. For the experiments presented
at ImageCLEF 2006 we constructed corresponding English dictionaries to be able to treat all the
textual annotations (only the Casimage collection has French textual annotations). However, due
to the size and complexity of this task, the English dictionaries are containing only a small part
of the French terms, and all the results from non-French collections are thus seriously influenced.

Once the terms are extracted form the textual annotations, a second step is the extract the
search terms from each topic. This is performed similarly as for the extraction of annotation
terms. Of course that using the same incomplete English dictionaries, the extraction of search
terms from non-French annotations is as well negatively influenced.

The extraction of terms is performed using the linguistic INTEX/NOOJ environment [18]. This
methodology is derived from the automatic text indexing approach that CISMeF is developing [12].

3.2 Visual similarity

Once the textual annotations containing all the search terms of each topic are obtained, the
relevance of each retrieved image is evaluated according to the mean similarity between each
retrieved image and the two (or three) query images (of each topic). The visual similarity between
two images is estimated as the L2 distance between feature representations of images. We employed
some of the features presented at section 2.2: COOC, RL, DCT and STAT as well as additional color
features: mean color, mean saturation and color histograms. The features are extracted from
64x64 image sub-blocks of 256×256 resized images, as for the image annotation experiments.

3.3 Results

A total of 10 groups participated at the multilingual medical image retrieval task of ImageCLEF
2006, with a number of 100 runs. The MedIC/CISMeF group submitted a single run, and was
placed on 69-th position, with an 0,0531 Mean Average Precision (MAP). Comparatively, the best
score was obtained by the Image Processing & Application Lab (IPAL)5, with 0,3095 MAP.
We expected this modest score due to several unexpected problems we experienced during the
preparation of our run. The most significant problem was that due to last moment technical
problems we were able to treat only ∼30% of the 50026 images. Furthermore, the dictionaries we
normally use for the extraction of medical terms are in French, and their translation in English
(with all the derived forms: plurals, synonyms) was very limited. Knowing that ∼82% of the
images have non-French annotations, we actually expected even poorer results. The treatment
of less then a third of the collection and with incomplete dictionaries is shown also by the small
number of answers our run proposed (for all the 30 topics), 1114, the smallest of all the runs.

The system is conceived to be automatic, but at the last moment we chosed to manually
intervene at the search term extraction phase in four of the topics: 1.1, 1.5, 1.9, 3.3. Therefore we
chose to declare the whole run as manual.

5http://ipal.imag.fr/



4 Conclusion

In this paper we present the methods we used for the ImageCLEF 2006 evaluation. We participated
in the medical tasks: the automatic annotation task, where we obtained the fourth rank (also the
third score and the third placed group), and the multilingual medical image retrieval task, where
our run was significantly less competitive, due technical an practical problems we were not able
to overcome until the last moment.

The results obtained in the annotation task shows that the approach we propose is capable
of obtaining very competitive results. A comparison between the correctly annotated images of
different systems could be interesting, and could indicate how to combine different architectures
to further improve the classification/annotation results.
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