

Using Ontology Dimension and Negative Expansion In CLEF05

Jean-Pierre Chevallet (IPAL CNRS) Joo Hwee Lim (I2R A-STAR) Saïd Radhouani (CLIPS CUI)

Outline

- Characteristics of the collection
- The presence of query dimension
- How to take into account dimensions
 - Ontology focus
 - with negative weight
 - Ontology dimension importance
 - Dimension pre-filtering
- Results

ImageCLEF 2005: Medical Retrieval Task

- 50,026 medical images from 4 collections:
 - Casimage: Radiology and pathology
 - Mallinckrodt Institute of Radiology (MIR): Nuclear medicine
 - Pathology Education Instructional Resource (PEIR): Pathology and radiology
 - PathoPIC: Pathology
- Annotations in XML format. The majority in English but a significant number also in French and German, with a few cases that do not contain any annotation at all
- Topics/Queries are expressed in 3 languages (English, French, German) + example images (all positive examples except one query with negative example)

Query dimensions

- Show me x-ray images with fractures of the femur.
- Zeige mir Röntgenbilder mit Brüchen des Oberschenkelknochens.
- Montre-moi des fractures du fémur.

Modality Pathology Anatomy

Query with modality refinement

- Show me sagittal views of head MRI images.
- Zeige mir sagittale Ansichten von MRs des Kopfes.
- Montre-moi des vues sagittales d'IRMs de la tête.
 Modality Pathology Anatomy

No explicit Pathology

Queries more "semantic"

- Show me images showing peptic ulcers or part of it.
- Zeige mir Bilder eines Magengeschwurs.
- Montre-moi des images d'ulcères de l'estomac.
 Modality Pathology Anatomy

Anatomy is explicit in French, and German

A Queries with negative feedback

- Show me any photograph showing malignant melanoma.
- Zeige mir Bilder bösartiger Melanome.
- Montre-moi des images de mélanomes malignes.

Modality Pathology Anatomy

Implicit Anatomy (skin)

In the case of Precision Oriented Retrieval

Very Special Queries

- Show me a guitar with a cancer
- Show me an old X-ray tool from Middle-Age
- Show me the face of a very nice guy (All made at Vienna)

Precision oriented Retrieval

- What is a precision oriented Retrieval ?
 - Documents corpus on a **restricted** domain
 - User are **specialist** of this domain
 - Precise need (strong focus)
 - Short list of good quality results
 - Precision is preferred to recall
- What does it implies ?
 - Document are consistent in themes
 - Use of **terms** : words that belong to a **terminology**
 - Terminology: set of technical terms form a domain
 - Queries have dimensions related to an ontology

Ontology & Dimension

- "An ontology is a formal explicit specification of a shared conceptualization" [Gruber 93]
 - Formal: machine readable
 - Explicit: definition of types and constraints
 - Shared: group of people, reuse
 - Conceptualization: abstract model of some phenomenon, selection of the related concepts.
- We call *Ontology dimension* the first level of a domain ontology
 - Ex: from MESH (the three levels we use)
 - Anatomy [A]
 - Diseases [C] (Pathology)
 - Analytical, Diagnostic and Therapeutic Techniques and Equipment [E] (Modality)

How to use dimensions ?

- 1. Dimension definition
 - Refers to an existing ontology (ex: MESH or UMLS)
- 2. Dimension extraction
 - Selection of the correct term
 - Related to Word Sense Disambiguation
- 3. Dimension inclusion in an IRS
 - Different "class" of terms
 - Need filtering among dimensions
- Somme possible solutions
 - Splitting queries on dimensions
 - Changing weight

Some Hypothesis

nsion

er

document includes at least one term

the ontology hierarchy

hat many terms

- 1. Ontology dimension
 - First level on the hierarchy are meaningful dimensions
- 2. Ontology dimension importance
 - Terms belonging to a divension are more important

liq

òn r<u>eca</u>l

- Ex: It is mandator matching one or
- 3. Ontology consistency
 - Ter _____ query
- 4. Ontolog
 - One e ont lor ve clu v r ter s in the same dime
- 5. Ontology
 - Terms f I dimension of from single dimension

Ontology focus & VSM

- One term in the ontology excludes other terms in the same dimension
- Idea: using the normal Vector Space Model
 - Positive weight for terms that appears
 - Negative weight for terms on the same dimension that does not appear
- **Negative weighting : seldom used**
 - can appears during relevance feedback
- Is the VSM still consistent?

VSM: inner product

- Vector Space Model: matching based on inner product
 D
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q</
 - For binary, it is the size of the **intersection** term set, with weighting still related to the intersection
 - Only query term participates to the matching
- Extra "inconsistent" document terms have no effect

VSM: lake of expressiveness

- Every terms at the same level
 - The classical "bag of word" problem
 - No way to force presence of terms
- No negation
- Only terms in the query participate on the matching
 - Classical solutions:
 - query expansion
 - Pseudo relevance feedback
- Expected behavior:

"a change in the query implies a change in the matching" Let's have a look at the logical side ...

Logical IR model

- Come from ideas of Keith Van Rijsbergen Relevance is expressed by P(D→Q)
- Ex: the "logical interpretation model"
 - Given a set of terms, an interpretation is a mapping to Boolean values
 - Formula are associated with **set** of interpretations
 - Logical implication = inclusion of interpretation
- In IR, document are expressed using only one interpretation
 - Meaning : *true* for terms relevant to document *D*
- Queries are expressed by a set of interpretation
 - Ex: a ∧ b is associate to all interpretation where a and b are true

Logical Interpretation of VSM

- Query for VSM are equivalent to:
 - **Disjunction** formula when correct matching for *non null inner product*
 - **Conjunction** formula when correct matching for inner product equal to the term set query size
 - Something fuzzy in-between (inclusion)
- Logical modeling has more power on the query side
 - Document: only one interpretation
 - Sort of closed word assumption
 - Query:
 - Several interpretation in boolean
 - Only one possible in VSM
 - Negation
- New interpretation of VSM

New interpretation schema

- New interpretation of terms
 - A term in relevant : positive value
 - A term is not relevant : negative value
 - No information on this term : null value
- Keep the use of inner product
- Query for VSM are then equivalent to:
 - Conjunction formula when correct matching for inner product equal to the size of non null query terms set
 - **Disjunction** formula : for a non null *positive influence* (see next)
- If no null term in index, then all query terms influence the matching

In practice

- Enlarge the indexing matrix
 - More computation to perform, inverted file less effective
- Negated terms may have a major role in matching results
 - Partial solution : reduce the negative weight

Simplification

- We only have positive terms in documents
- We reduce the importance of negative terms
 - Negative expansion on the basis of the ontology
 - Equal weight distribution on added negated terms

Second approach Dimension Filtering

- Ontology dimension importance
 - Terms belonging to some dimensions are more important
- Split the initial query
 - Each sub query is addressing one ontology dimension
 - A *mapping* query on ontology dimension (term set intersection)
- Use Boolean expression for dimension combination
 - Acts as a Boolean dimension filter
- Use classical VSM and weighting on this document filtered subset

Global Framework

Indexing process

- Using XIOTA: XML based Information Retrieval Tool
- Correction of XML coding errors
- Automatic Reconstruction of document XML structure in MIR
 - Ex: "Brief history"
- Filtering fields to be indexed
 - Ex: PathoPic : Diagnosis Synonyms Description
- Part of Speech tagging
 - no stop words, "TreeTagger"
- Term selection: filtering on POS
 - Only nouns adjectives and abbreviations
- One single collection for all documents
- Same treatments to queries

Text extraction and indexing

3 sorts of semantic dimension : anatomy (hand, brain, etc), modality (MRI,Xray,etc),

- Using classical *ltc* weighting schema
- Querying each collection language
- Merging the result: take the maximum of RSV
- Selecting a very small subset of the ontology
 - First attempt to use dimensions
 - Reduce computation complexity
- Negative expansions of all queries using ontology
- Select one dimension per query
 - Filtering the index using dimension

Results

Negative Exp.	Dimension filtering	МАР	
no	no	17,25%	
yes	no	17,32%	
no	At least one dimension*	19,64%	
no	At least one particular dimension	20,75%	
yes	At least one particular dimension	20,84%	
yes	Anatomy	20,85%	
yes	Anatomy & Pathology	21,39%	

*Order: Anatomy Pathology Modality

Official runs

Image Indexing A Structured Learning Approach

- 39 visual keywords (e.g. mri-head-brain, photo-skin, xray-lung-opaque) learned from 1460 cropped image patches
- Training images: 158 (0.3%) from the 4 test collection and 96 images from Web
- Support vector machines with RBF kernels
- Indexing: multi-scale detection of VK, reconciled and aggregated into local semantic histograms as compact indexes
- Support both similarity-based and semantic-based queries

(See poster of Lim Joo Hwee)

Fusion: Text + Image

- Fusion at retrieval level: based on query results for each query :
 - Linear normalization of text and image output (RSV: return status value)
 - Fusion schemes attempted:
 - Maximum of RSVs from 2 lists
 - Average of RSVs from 2 lists (intersection)
- Fusion at index level: enhance image index from text and vice versa (not tested)

Results with images

Fusion Method	Neg. Exp	MAP	
Maximum	no	23,12%	Official runs
Maximum	yes	23,25%	
Intersection + Average	no	28.19%	
Intersection + Average	yes	28.21%	

Conclusion

- CLEF05 multilingual image collection:
 - Very difficult task: more images, more languages, more "precise" and "semantics" queries
- Classic vector space model only fail :
 - documents too different in size (from 3 to 5000 words)
 - Precise semantic field in the query (anatomy, modality, etc)
- Importance of ontology dimension
- Dimension filtering more efficient than negative weighting
 - Hypothesis: *Dimension importance* better than *ontology focus*
- Visual and text: a good complementary
 - Text: closer to the meaning, e.g. specific terms
- Some queries are easier by image contents, others are more appropriate using text.

Thank You !

**

**