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Abstract

We describe the official runs of our team for the CLEF 2004 ad hoc tasks. We took part in the
monolingual task (for Finnish, French, Portuguese, and Russian), in the bilingual task (for Amharic to
English, and English to Portuguese), and, finally, in the multilingual task.

1 Introduction

In the CLEF 2004 evaluation exercise we participated in all three ad hoc retrieval tasks. We took part in the
monolingualtasks for four non-English languages, Finnish, French, Portuguese, and Russian. The Portuguese
language was new for CLEF 2004. Our participation in the monolingual task was a further continuation of our
earlier efforts to monolingual retrieval [11, 5, 6]. Our first aim was to continue our experiments with a number of
language-dependent techniques, in particular stemming algorithms for all European languages [14], and compound
splitting for the compound rich Finnish language. A second aim was to continue our experiments with language-
independent techniques, in particular the use of character n-grams, where we may also index leading and ending
character sequences, and retain the original words. Our third aim was to experiment with combinations of runs.

We took part in thebilingual task, this year focusing on Amharic into English, and on English to Portuguese.
Our bilingual runs were motivated by the following aims. Our first aim was to experiment with a language for
which resources are few and far between, Amharic, and to see how far we could get by combining the scarcely
available resources. Our second aim was to experiment with the relative effectiveness of a number of translation
resources: machine translation [16] versus a parallel corpus [7], and query translation versus collection translation.
Our third aim was to evaluate the effectiveness of our monolingual retrieval approaches for imperfectly translated
queries, shedding light on the robustness of these approaches.

Finally, we continued our participation for themultilingual task, where we experimented with straightforward
ways of query translation, using machine translation whenever available, and a translation dictionary otherwise.
We also experimented with combination methods using runs made on varying types of indexes.

In Section 2 we describe theFlexIR system as well as the approaches used for each of the tasks in which we
participated. Section 3 describes our official retrieval runs for CLEF 2004. In Section 4 we discuss the results we
have obtained. Finally, in Section 5, we offer some conclusions regarding our document retrieval efforts.

2 System Description

2.1 Retrieval Approach

All retrieval runs usedFlexIR, an information retrieval system developed at the University of Amsterdam.FlexIR
supports many types of preprocessing, scoring, indexing, and retrieval tools. It also supports several retrieval
models, including the standard vector space model, and language models. Our default retrieval model is a vector
space model using the Lnu.ltc weighting scheme [1] to compute the similarity between a query and a document.
For the experiments on which we report in this note, we fixedslopeat 0.2; the pivot was set to the average number
of unique words per document. We also experimented with language models [3]. Here, we used a uniform query
term importance weight of 0.15.
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Text normalization. We do some limited text normalization by removing punctuation, applying case-folding,
and mapping diacritics to the unmarked characters. The Cyrillic characters used in Russian can appear in a variety
of font encodings. The collection and topics are encoded using the UTF-8 or Unicode character encoding. We
converted the UTF-8 encoding into KOI8 (Kod Obmena Informatsii), a 1-byte per character encoding. We did
all our processing, such as lower-casing, stopping, stemming, and n-gramming, on documents and queries in this
KOI8 encoding. Finally, to ensure proper indexing of the documents using our standard architecture, we converted
the resulting documents into the Latin alphabet using the Volapuk transliteration. We processed the Russian queries
similar to the documents.

Morphological Normalization. We carried out extensive experiments with different forms of morphological
normalizations for monolingual retrieval [4]. These include the following:

Stemming— For all languages we used a stemming algorithm to map word forms to their underlying stems.
Stemming is a language-dependent approach to morphological normalization. We used the family of Snowball
stemming algorithms, available for all the languages of the CLEF collections. Snowball is a small string processing
language designed for creating stemming algorithms for use in information retrieval [14].

Decompounding— For the compound-rich Finnish language, we also apply a decompounding algorithm. We
treat all the words occurring in the Finnish collection as potential base words for decompounding, and also use
their associated collection frequencies. We ignore words of length less than four as potential compound parts, thus
a compound must have at least length eight. As a safeguard against oversplitting, we only regard compound parts
that have a higher collection frequency than the compound itself. We retain the original compound words, and add
their parts to the documents; the queries are processed similarly.

n-Gramming— For all languages, we used character n-gramming to index all character-sequences of a given
length that occur in a word. n-Gramming is a language-independent approach to morphological normalization. We
used three different ways of forming n-grams of length 4. First, we index pure 4-grams. For example, the word
Information will be indexed as 4-gramsinfo nfor form orma rmat mati atio tion. Second, we index 4-
grams with leading and ending 3-grams. For the example this will giveinf info nfor form orma rmat mati
atio tion ion . Third, we index 4-grams plus original words. For the example this givesinfo nfor form
orma rmat mati atio tion information.

Stopwords. Both topics and documents were stopped using the stopword lists from the Snowball stemming
algorithms [14]; for Finnish we used the Neuchâtel-stoplist [10]. Additionally, we removed topic specific phrases
such as ‘Find documents that discuss . . . ’ from the queries. We did not use a stop stem or stop n-gram list, but we
first used a stopword list, and then stemmed/n-grammed the topics and documents.

Blind Feedback. Blind feedback was applied to expand the original query with related terms. We experimented
with different schemes and settings, depending on the various indexing methods and retrieval models used. For our
Lnu.ltc runs term weights were recomputed by using the standard Rocchio method [13], where we considered the
top 10 documents to be relevant and the bottom 500 documents to be non-relevant. We allowed at most 20 terms
to be added to the original query.

Combined Runs. We combined various ‘base’ runs using either a weighted or unweighted combination methods.
The weighted interpolation was produced as follows. First, we normalized the retrieval status values (RSVs),
since different runs may have radically different RSVs. For each run we reranked these values in[0,1] using
RSV′i = (RSVi −mini)/(maxi −mini); this is the MinMax Norm considered in [8]. Next, we assigned new weights
to the documents using a linear interpolation factorλ representing the relative weight of a run:RSVnew= λ ·RSV1+
(1−λ) ·RSV2. Forλ = 0.5 this is similar to the simple (but effective) combSUM function used by Fox and Shaw [2]
The interpolation factorsλ were loosely based on experiments on earlier CLEF data sets. When we combine more
than two runs, we give all runs the same relative weight, effectively resulting in the familiar combSUM.

3 Runs

We submitted a total of 24 retrieval runs: 12 for the monolingual task, 7 for the bilingual task, and 5 for the
multi-lingual task. Below we discuss these runs in some detail.

3.1 Monolingual Runs

All our monolingual runs used the title and description fields of the topics. We constructed five different indexes
for each of the languages using Words, Stems, 4-Grams, 4-Grams+start/end, and 4-Grams+Words:



• Words— no morphological normalization is applied, although for FinnishSplit indicates that words are
decompounded.

• Stems— topic and document words are stemmed using the morphological tools described in Section 2. For
Finnish,Split+stemindicates that compounds are split, where we stem the words and compound parts.

• n-Grams— both topic and document words are n-grammed, using the settings discussed in Section 2.
We have three different indexes:4-Grams; 4-Grams+wordswhere also the words are retained; and4-
Grams+start/endwith beginning and ending 3-grams.

On all these indexes we made runs using the Lnu.ltc retrieval model; on the Words and on the Stems index we
also made runs with a language model, resulting in 7 base runs for French, Portuguese, and Russian. In addition,
for the compound rich Finnish language we also applied a decompounding algorithm [4], on words and on stems,
from which we produced base runs with both the Lnu.ltc retrieval model and a language model, leading to a total
of 11 base runs for Finnish.

All our official submissions were combinations of the base runs just described. For each of the four languages
we constructed two combinations of stemmed and n-grammed base runs, as well as a “grand” combination of all
base runs. Table 1 provides an overview of the runs that we submitted for the monolingual task. The third column
in Table 1 indicates the type of run, and for two-way combinations the interpolation factorλ used is given in the
fourth column.

Run Language Type Factor
UAmsC04FiFi4GiSb FI 4-Grams+words;Split+stem 0.4
UAmsC04FiFi4GiWd FI 4-Grams+start/end;Split 0.4
UAmsC04FiFiAll FI Grand combination of 11 runs -
UAmsC04FrFr4GiSb FR 4-Grams+words;Stems 0.6
UAmsC04FrFr4GiWd FR 4-Grams+start/end;Words 0.6
UAmsC04FrFrAll FR Grand combination of 7 runs -
UAmsC04PoPo4GiSb PT 4-Grams+words;Stems 0.4
UAmsC04PoPo4GiWd PT 4-Grams+start/end;Words 0.4
UAmsC04PoPoAll PT Grand combination of 7 runs -
UAmsC04RuRu4GiSb RU 4-Grams+words;Stems 0.5
UAmsC04RuRu4GiWd RU 4-Grams+start/end;Words 0.5
UAmsC04RuRuAll RU Grand combination of 7 runs -

Table 1: Overview of the monolingual runs submitted. For combined runs column 3 gives the base runs that were
combined, and column 4 gives the interpolation factorλ.

3.2 Bilingual Runs

For the bilingual task, we focused on Amharic to English, and English to Portugues. We submitted a total of 7
runs; all of them used the title and description fields of the topics. For our bilingual runs, we experimented with
the WorldLingo machine translation [16] for translations into Portuguese, with a parallel corpus for translations
into Portuguese, and with a variety of techniques for the Amharic topics, as we will now explain.

3.2.1 English to Portuguese

Machine Translation. We used the WorldLingo machine translation [16] for translating the English topics into
Portuguese. The translation is actually in Brazilian Portuguese, but the linguistic differences between Portuguese
and Brazilian are fairly limited.

Parallel Corpus. We used the sentence-aligned parallel corpus [7], based on the Official Journal of the European
Union [15]. We built a Portuguese to English translation dictionary, based on a word alignment in the parallel
corpus. Since the word order in English and Portuguese are not very different, we only considered potential
alignments with words in the same position, or one or two positions off. We ranked potential translations with a
score based on:

• Cognate matching— Rewarding similarity in word forms, by looking at the number of leading characters
that agree in both languages.



• Length matching— Rewarding similarity in word lengths in both languages.

• Frequency matching— Rewarding similarity in word frequency in both languages.

To further aid the alignment, we constructed a list of 100 most frequent Portuguese words in the corpus, and
manually translated these to English. The alignments of these highly frequent words were resolved before the word
alignment phase. We built a Portuguese to English translation dictionary by choosing the most likely translation,
where we only include words that score above a threshold. The length of the translation dictionary is 19,554 words.
We use the translation dictionary resulting from the parallel corpus for two different purposes. Firstly, we translate
the English topics into Portuguese. Secondly, we translate the Portuguese collection into English.

3.2.2 Amharic to English

Amharic, which belongs to the Semitic family of languages, is one of the most widely spoken languages in
Ethiopia. In Amharic, word formation involves affixation, reduplication, Semitic stem interdigitation, among
others. The most characteristic feature of Amharic morphology is root-pattern phenomena. This is especially true
of Amharic verbs, which rely heavily on the arrangement of consonants and vowels in order to code different
morphosyntactic properties (such as perfect, imperfect, jussive etc.). Consonants, which mostly carry the semantic
core of the word, form the root of the verb. Consonants and vowel patterns together constitute the stems, and stems
take different types of affixes (prefixes and suffixes) to form the fully inflected words; see [12].

For our bilingual Amharic to English runs, we attempted to show how the (minimal) available resources for
Amharic can be used in (Amharic-English) bilingual information retrieval settings. Since English is used on the
document side, it is interesting to see how the existing retrieval techniques can be optimized in order to make the
best use of the output of the error-prone translation component.

Resources and Query Translation. Our Amharic to English query translation is based mainly on dictionary
look up. We used an Amharic-English bilingual dictionary which consists of 15,000 fully inflected words. Due
to the morphological complexity of the language, we expected the dictionary to have limited coverage. In order
to improve on the coverage, two further dictionaries, root-based and stem-based, were derived from the original
dictionary. We also tried to augment the dictionary with a bilingual lexicon extracted from aligned Amharic-
English Bible text. However, most of the words are old English words and are also found in the dictionary. The
word dictionary also contains commonly used Amharic collocations. Multiword collocations were identified and
marked in the topics. For this purpose, we used a list of multiword collocations extracted from an Amharic text
corpus. The dictionaries were searched for a translation of Amharic words in the following order: word-dictionary,
stem dictionary, root dictionary.

Total no. of words Word dictionary Root dictionary English spell checker
1,893 813 178 57

Table 2: Coverage of the respective techniques over the words occurring in the Amharic topics.

Leaving aside the ungrammaticality of the output of the above translation, there are a number of problems. One is
the problem of unknown words. The words may be Amharic words not included in the dictionary or foreign words.
Some foreign words and their transliteration have the same spelling or are nearly identical. To take advantage of
this fact, a word is checked using an English spellchecker (Aspell); if found, it is returned as a translation. In some
cases, there may be typographical variations between the English word and its transliteration; to address this, the
first word among the suggestions will be checked for string similarity. If it falls above some threshold, it is taken
as translation. Other unknown words are simply passed over to the English translation. Another problem relates
to the selection of the appropriate translation from among the possible translations found in the dictionary. In the
absence of frequency information, which allows selecting the right translation, the most frequently used English
word is selected as a translation of the corresponding Amharic word. This is achieved by querying the web. The
coverage of the translation is 55%. The number of correct translations is still lower. Table 2 gives some idea of the
performance of the translation strategy.

For both English and Portuguese we used a similar set of indexes as for the monolingual runs described earlier
(Words, Stems, 4-Grams, 4-Grams+start/end, 4-Grams+words); for all of these, Lnu.ltc runs were produced, and
for the Word and Stems indexes we also produced a language model run, leading to 7 base runs for the Amharic to
English task. Additionally, for the English to Portuguese task we used three types of translation: query translation



using machine translation (WorldLingo), query translation using a parallel corpus (query EU), and collection trans-
lation using a parallel corpus (collection EU). This gave rise to a total of 21 base runs for the English to Portuguese
task.

Table 3 provides an overview of the runs that we submitted for the bilingual task. The fourth column in Table 3
indicates the type of run.

Run Topics Documents Type Factor
UAmsC04EnPo4GiSb EN PT 4-Grams+words;Stems (collection EU) 0.7
UAmsC04EnPo4iSPC EN PT 4-Grams+words;Stems (query EU) 0.7
UAmsC04EnPo4iSWL EN PT 4-Grams+words;Stems (WorldLingo) 0.7
UAmsC04EnPoAll EN PT Grand combination of 21 runs -
UAmsC04AmEnWrd AM EN Words -
UAmsC04AmEn4GiSb AM EN 4-Grams+words;Stems 0.7
UAmsC04AmEnAll AM EN Grand combination of 7 runs -

Table 3: Overview of the bilingual runs submitted. For combined runs column 4 gives the base runs that were
combined, and column 5 gives the interpolation factorλ.

3.3 Multilingual Runs

We submitted a total of 4 multilingual runs, all using the title and description of the English topic set. The
multilingual runs were based on the following mono- and bilingual runs:

• English to English– This is just a monolingual run, similarly processed as the other monolingual runs above.

• English to Finnish— We translated the English topics into Finnish using the Mediascape on-line dictio-
nary [9]. For words present in the dictionary, we included all possible translations available. For words not
present in the dictionary, we simply retained the original English words.

• English to French— We translated the English topics into French using the WorldLingo machine transla-
tion [16].

• English to Russian— Again, we translated the English topics into Russian using the WorldLingo machine
translation [16].

Results of the mono- and bilingual runs just described were combined using unweighted combSUM. We also
translated topics using another Russian on-line translator. However, the resulting translations were identical those
provided by WorldLingo. We submitted a fifth multilingual run, UAmsC04EnMuAll2, including English to Rus-
sian results using both translations. This run scored inferior due to the overweighting of the Russian documents.

Table 4 provides an overview of the runs that we submitted for the multilingual task. The fourth column in
Table 4 indicates the document sets used.

Run Topics Documents Type
UAmsC04EnMu4Gr EN EN, FI, FR, RU 4× 4-Grams+words
UAmsC04EnMuWSLM EN EN, FI, FR, RU 8× Words LM, Stems LM
UAmsC04EnMu3Way EN EN, FI, FR, RU 12× Words, Stems, 4-Grams+start/end
UAmsC04EnMuAll EN EN, FI, FR, RU Grand combination of 7 runs per language

Table 4: Overview of the multilingual runs submitted. Column 4 indicates the base runs used to generate the
multilingual run.

4 Results

This section summarizes the results of our CLEF 2004 submissions.



4.1 Monolingual Results

Table 5 contains the mean average precision (MAP) scores for all the monolingual ‘base’ runs described in the
previous section. The language model experiment clearly indicate the effectiveness of the stemming algorithm.
For the vector space model, there is a small loss for Portuguese, but also a gain in performance for the other three
languages. The outcome for the n-gram runs is less clear: there is a substantial gain in effectiveness for Finnish,
but no or only a moderate gain for the other three languages. When comparing 4-gram with 4-gram+start/end, we
see that including leading and ending 3-grams is always effective. Similarly, including words is effective for three
of the four languages.

Finnish French Portuguese Russian
Words 0.3776 0.4084 0.4032 0.3186
Stems 0.4549 0.4312 0.4023 0.3611
4-Grams 0.4949 0.3673 0.3439 0.2783
4-Grams+start/end 0.5264 0.3794 0.3653 0.3212
4-Grams+words 0.4930 0.4133 0.3723 0.3357
Words LM 0.3825 0.4059 0.4040 0.2958
Stems LM 0.4530 0.4463 0.4269 0.3847

Table 5: Overview of MAP scores for monolingual base runs. Best scores are in boldface.

Table 6 contains the MAP scores for the Finnish decompounding experiments. Decompouding leads to improve-
ments for both retrieval models; decompounding and stemming only leads to improvements for the language model
run. All Finnish n-gram runs in Table 5 outperform all decompounded runs.

Finnish Words Finnish Stems
Words Split Stems Split

Lnu.ltc 0.3776 0.4329 0.4549 0.4414
LM 0.3825 0.4021 0.4530 0.4617

Table 6: Overview of MAP scores for Finnish decompounding runs.

Finally, Table 7 lists the MAP scores for our official runs. For these, the grand combination of all base runs always
outperforms the combination of a single (non)stemmed run and a single n-grammed run. When comparing with
the best scoring base runs in Tables 5, we see that there is only a substantial improvement for Russian. There is
a moderate improvement for French and Portuguese. The best Finnish n-gram run even outperforms the grand
combination.

Finnish French Portuguese Russian
4-Grams+words;(Split+)stem 0.4787 0.4410 0.4110 0.4227
4-Grams+start/end;(Split+)words 0.5007 0.4092 0.4180 0.4058
All base runs 0.5203 0.4499 0.4326 0.4412

Table 7: Overview of MAP scores for our officially submitted runs. Best scores per language are in boldface.

4.2 Bilingual Results

Table 8 shows the mean average precision scores for our base runs. For the resource-poor Amharic to English task,
we expected a fairly low performance, somewhere in the 0.12–0.20 range. However, the vector space model run
on the Words index is surprisingly effective. Furthermore, n-gramming leads to a loss of performance.

If we compare the different translation methods for the English to Portuguese tasks, and for the plain Words
index, we see that, for query translation, the machine translation is more effective than the parallel corpus. This
is as expected, since a word by word translation dictionary was derived from the parallel corpus. However, if
the parallel corpus is used to translate the collection, we obtain a higher score for the Words index than both
query translation methods. Applying a stemming algorithm is helpful for the MAP score for both ways of query
translation, although it hurts the score of the collection translation. The use of n-gramming is only effective for
query translation with the parallel corpus, where it leads to substantial improvements in the MAP score.

Table 8 also contains the run combinations that were submitted as official runs. The combination of a stemmed
and a n-grammed run does generally not lead to improvement. The combination of all base runs leads to the best



Amharic to English English to Portuguese
(query) (query EU) (Wordlingo) (collection EU)

Words 0.2071∗ 0.2641 0.3220 0.3830
Stems 0.1961 0.3201 0.3901 0.3281
4-Grams 0.1224 0.3704 0.2134 0.2954
4-Grams+start/end 0.1300 0.3826 0.2296 0.2856
4-Grams+words 0.1467 0.3678 0.2355 0.3203
Words LM 0.1694 0.2511 0.3167 0.3471
Stems LM 0.1703 0.2993 0.3835 0.3257
4-Grams+words;Stems 0.1915∗ 0.2755∗ 0.3207∗ 0.3850∗

All base runs 0.2138∗ 0.4366∗

Table 8: Overview of MAP scores for all bilingual runs. Best scores are in boldface. Officially submitted runs are
marked with an asterisk.

performance for Amharic to English, as well as for English to Portuguese. The score for English to Portuguese is
particularly impressive, even outperforming our best monolingual score for Portuguese.

4.3 Multilingual Results

Table 9 shows our mean average precision scores for all base runs used in the multilingual task. We did not apply
decompounding to the Finnish topics. As an aside, we see that for monolingual English, the language model is
particularly effective. The results for Finnish, French, and Russian are generally in line with the monolingual
results discussed above, be it that the n-gramming approaches are generally more effective on the translated topics.

English to
English Finnish French Russian

Words 0.4488 0.2057 0.3351 0.2012
Stems 0.4885 0.2719 0.3677 0.1478
4-Grams 0.3986 0.2376 0.3585 0.2140
4-Grams+start/end 0.4369 0.2578 0.3810 0.2623
4-Grams+words 0.4387 0.2270 0.3596 0.2595
Words LM 0.4909 0.1913 0.3489 0.1935
Stems LM 0.5156 0.2303 0.3676 0.1978
4-Grams+words 0.2333∗

Words LM;Stems LM 0.3040∗

Words;Stems;4-Grams+start/end 0.3258∗

All 0.3427∗

Table 9: Overview of MAP scores for all multilingual runs (bottom half) and of the mono- and bilingual runs used
to produce them (top half). Best scores are in boldface. Officially submitted runs are marked with an asterisk.

Table 9 also includes the run combinations submitted as official runs; recall that all these combinations are un-
weighted. The additional multilingual run having two English to Russian runs for each of the indexes scored
lower with an MAP of 0.2520. On the whole, the performance increases with the number of runs included in the
combination.

5 Conclusions

In this paper we documented the University of Amsterdam’s participation in the CLEF 2004 ad hoc retrieval tasks:
monolingual, bilingual, and multilingual retrieval. For the monolingual task, we conducted experiments on the
effectiveness of morphological normalization approaches and combination methods. Our results shed further light
on the effectiveness of language-dependent and language-independent approached to morphological normalization.
As to the bilingual task, we experimented with bilingual retrieval in a resource-poor language, Amharic, and
examined the relative effectiveness of different translation resources and of query versus collection translation. Our
results indicate interesting differences between the bilingual approaches. The effectiveness of combining different
translation methods was highlighted by the fact that the best bilingual score outperformed the best monolingual



score. Finally, for the multilingual task, we experimented with straightforward query translations and combination
methods, and showed the effectiveness of combining a wide range of base runs.
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