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Introduction

InSicht: question answering (QA) system implemented for German

Key characteristics:

1. Deep syntactico-semantic analysis of questions and documents (with a parser)

2. Independence from other document collections (like WWW documents)
— avoids unsupported answers

3. Answer generation from semantic representations of documents (no direct extraction)
Related system for German: — Neumann and Xu (2003).

Relies on shallow, but robust methods.
InSicht: builds on deep parsing

Related system for English: — Harabagiu et al. (2001).
Applies a theorem prover and a large knowledge base to validate candidate answers
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Document Processing
Each article is stored in an SGML file conforming to the CES
(Corpus Encoding Standard, (Ide et al., 1996))

Elimination of duplicate articles

Table 1: Statistics from Document Preprocessing

subcorpus articles sentences words average sen- duplicate articles
without tence length
duplicates

identical bytes identical words

FR 122541 2472353 45332424 18.3 22 17152
SDA 140214 1930126 35119427 18.2 333 568
SP 13826 495414 9591113 19.4 0 153
all 276581 4897893 90042964 18.4 355 17873
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Syntactico-semantic parser WOCADI (WOrd ClAss based DIsambiguating):
transforms articles into semantic networks
(MultiNet formalism, (Helbig, 2001; Helbig and Gnorlich, 2002))

Each sentence is represented by one semantic network
Semantic networks are simplified and normalized

—— allows more efficient search

Table 2: Statistics from Document Parsing

subcorpus parse results full parse (%) chunk parse (%) no parse (%)

FR 2469689 44.3 21.7 34.0
SDA 1930111 55.8 19.0 25.2
SP 485079 427 19.3 38.0
all 4884879 48.7 20.4 30.9
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Figure 1: MultiNet generated for document sentence SDA.950618.0048.377:
In Indien starben [... | 523 Menschen infolge der [... ] anhaltenden Hitzewelle.
(‘523 people died in India due to the continuing heat wave.”)
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Question Processing

Question is parsed by the WOCADI parser
— semantic network, (question) focus, sentence type
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Figure 2: MultiNet generated for question 164:
Wie viele Menschen starben wihrend der Hitzewelle in Indien?
(‘How many people died during the heat wave in India?’)
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Query Expansion

Query expansion generates equivalent (or similar) semantic networks
— find answers that are not explicitly contained in a document but only implied

1. Equivalence rules (or paraphrase rules) for MultiNet:
work on semantic networks, not on surface strings (important because of freer word order)

2. Rule schemas (for maintenance reasons):
e.g. one schema generates 190 connections of the type:
Spanien, Spanier, spanisch
(‘Spain’, ‘Spaniard’, ‘Spanish’)

3. Implicational rules for lexemes (used in backward chaining):

e.g. entailment between ermorden. 1.1 (‘kill’) and sterben.1.1 (‘die’)

4. Lexico-semantic relations (synonymy, hyponymy, etc.):
from the lexicon (HaGenLex, (Hartrumpf et al., 2003)),
from GermaNet

Query expansion results per question from QA @CLEF 2004:
6.5 additional semantic networks,
215 using lexico-semantic relations
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Figure 3: One result from query expansion for question 164 from Figure 2
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Figure 4: MultiNet for document sentence (repeated from Figure 1)

@ FernUniversitat in Hagen — [1CS — Sven Hartrumpf



Search for Matching Semantic Networks

Idea: find a document sentence containing an answer by semantic network matching

Semantic network for the question is split:

1. the queried network

(roughly corresponding to the phrase headed by the interrogative pronoun or determiner)

2. the match network
(the semantic network without the queried network)
Concept ID index server for speedup

Semantic networks are simplified and normalized to achieve acceptable answer times:

1. Inner nodes of a semantic network that correspond to instances (cN) are combined with their
concept nodes

— a lexicographically sorted list of MultiNet edges as a canonical form
— allows efficient matching with many question networks in parallel

2. Semantic details from some layers in MultiNet are omitted
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Figure 5: MultiNet for document sentence (repeated from Figure 1)
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(*in ’cl*in” "clstaat.1.1”)

(aff ’clsterben.1.1” "clmensch.1.1”)
(attr ”clstaat.1.1” ”’clname.1.1”")

(caus “clhitzewelle.1.1” ’clsterben.1.1”")

(loc ”clsterben.1.1” ’c1*in”)

(prop “’clhitzewelle.1.1” “anhaltend.1.17)
(temp “clsterben.1.1” ’past.0”)

(val ’clname.1.1” ”indien.0”)

Figure 6: Simplified and normalized semantic network for the MultiNet of Figure 5

(without layer features)
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Answer Generation

Generation rules

Input:

1. simplified semantic network of the question (the queried network part)
2. sentence type of the question

3. matching semantic network from the document

Output: a German phrase as a candidate answer or failure
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Answer Generation

Generation rules

Input:

1. simplified semantic network of the question (the queried network part)
2. sentence type of the question

3. matching semantic network from the document

Output: a German phrase as a candidate answer or failure

Answer Selection

Result of the preceding step:
pairs of generated answer string and supporting sentence 1D

Choice from candidate answers:
preference for longer answers and preference for more frequent answers
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Evaluation on the QA @ CLEF 2004 Test Set

One goal: Identify areas of improvement
by annotating each question leading to a suboptimal answer with a problem class

InSicht achieved 80 (submitted run: 67) correct and 7 (subm. run: 2) inexact answers for 197 questions
— leaves 110 questions (with incorrect empty answer) to be annotated

Sample of 43 questions
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Table 3: Hierarchy of problem classes and problem class frequencies

name description %
problem
g.error error on question side
g.parse_error question parse is not complete and correct
g.no_parse parse fails 0.0
g.chunk parse only chunk parse result 0.0
g.incorrect_parse parser generates full parse result, but it contains errors 13.3
g.ungrammatical question is ungrammatical 2.7
d.error error on document side
d.parse_error document sentence parse is not complete and correct
d.no_parse parse fails 33.2
d.chunk parse only chunk parse result 2.0
d.incorrect_parse parser generates full parse result, but it contains errors 7.8
d.ungrammatical document sentence is ungrammatical 2.0
g-d.error error in connecting question and document
g-d.failed_generation = no answer string can be generated for a found answer 2.0
g-d.matching_error match between semantic networks is incorrect 5.9
g-d.missing_cotext answer is spread across several sentences 5.9
g-d.missing_inferences inferential knowledge is missing 25.4

Three problems per question possible, but stop after first problem to avoid speculation
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Conclusions and Perspectives

InSicht’s achievements:

1. High precision: non-empty answers (i.e. non-NIL answers) are rarely wrong
for QA@CLEF 2004: 0 (submitted run: 1)

2. Deep level of representation based on semantic networks:
allows intelligent processes, e.g. paraphrasing on semantic level, inferences
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Conclusions and Perspectives

InSicht’s achievements:

1. High precision: non-empty answers (i.e. non-NIL answers) are rarely wrong
for QA@CLEF 2004: 0 (submitted run: 1)

2. Deep level of representation based on semantic networks:
allows intelligent processes, e.g. paraphrasing on semantic level, inferences

Problem areas and directions for future work:

1. Inferential knowledge
— encode and semi-automatically acquire entailments etc.

2. Parser coverage
— extend the lexicons and improve robustness and grammatical knowledge of the parser

3. Partial semantic networks
— devise methods to utilize partial semantic networks for finding answers

4. Answers spread across several sentences
— apply the parser in text mode (coreference resolution, (Hartrumpf, 2001))

5. Processing time for documents
— develop a strategy for on-demand processing
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