
Selective compound splitting of Swedish queries for Boolean

combinations of truncated terms

Rickard Cöster, Magnus Sahlgren and Jussi Karlgren

Swedish Institute of Computer Science, SICS,
Box 1263, SE-164 29 Kista, Sweden

{rick, mange, jussi}@sics.se

Abstract

Swedish is a compounding language, and therefore it is important to split compound
words so that useful word constituents can be found. One of the problems is that it
is difficult to find constituents that express a concept similar to that expressed by the
compound.

The approach taken in this paper is to look at how the leading constituent of
the compound word can be used to expand a search query. The constituent was
added to the original query, while still keeping the compound. Every word was then
truncated so as to increase recall by hopefully finding other compounds with the leading
constituent as prefix. Since this approach increase recall in a rather uncontrolled way,
we also used a Boolean quorum-level type of query combination so that documents
were ranked according to both the tf-idf factor but also to the number of matching
Boolean combinations.

The Boolean combinations performed relatively well, taken into consideration that
the queries were very short (maximum five search terms).

Also included in this paper are the results of two other methods we are currently
working on in our lab; one for re-ranking search results on the basis of stylistic analysis
of documents, and one for dimensionality reduction using Random Indexing.

1 Introduction: Compounds in Swedish

This year, we focused on the Swedish monolingual track. We submitted four runs, of which the
first two deal with the problem of using compound word splitting for query expansion.

The other two runs test very different approaches: first, how to re-rank search results based on
a stylistic analysis of the retrieved documents and, secondly, the effect of aggressive dimensionality
reduction using Random Indexing.

Swedish is a compounding language. This means that new words are often formed by adjoining
two or more separate words. Such words are called closed compounds. For example, the Swedish
word “Diamantgruva” is a closed compound of “Diamant” (Diamond) and “Gruva” (Mine). The
other two forms of compound words are the open form (“Post office”) and the hyphenated (“Long-
term”). The closed form is common in Swedish (and languages such as German, Finnish and
Danish) whereas the open form is more common in English.

Certainly, it is necessary for a retrieval system to split the compounds into constituents, since
such words may be too specific but contain constituents that are useful and content-bearing. One

of the problems of compound splitting is that it is difficult to find constituents that express a
concept 1 that is similar to that expressed by the compound.

For example, the word “Diamantgruva” is important to split so that the content-bearing words
“Diamant” and “Gruva” can be found. These two words are good query terms, since they are
not ambiguous and express the two separate concepts diamond and mine. On the other hand, if
the word “Domstol” (Court) is split into “Dom” (Judgement) and “Stol” (Chair), some errors are
introduced. “Stol” is not a good search term in this context, and “Dom” is ambiguous; it also
means “Them” in spoken Swedish. Splitting “Domstol” thus make more harm than keeping the
compound form.

Another problem that may occur can be exemplified by splitting the compound “Riksdagshus”
(Parliament building). The lemmatizer that we used in our experiments split this into the three
constituents “Riks”, “Dags” and “Hus”. It did not find the word “Riksdag” (Parliament) which
is an important word in this context. Furthermore, the words “Riks” and “Dags” should not have
been extracted as constituents, since “Riksdag(s)” is a not a compound. Moreover, it seems that
the lemmatizer does not make a morphological analysis of the constituents. This has the effect
that sometimes a joining ’s’ is left at the end of words that should not have it.

In summary, some of the problems with using constituents from compound splitting are that
they

• may not express a concept similar to that expressed by the compound

• may be ambiguous

• may not always be valid words

2 Selective compound splitting and Boolean combinations

Since compound splitting may not always yield constituents that improve a query, it is desirable
to have a method for selecting only a subset of the constituents. Since compounds are often very
specific words, one way to improve the query is to find constituents that boost the recall. In our
case, we chose to select only the leading constituent for expanding the query.

The leading constituent is sometimes a modifier to the last constituent, i.e. it determines
something about the last constituent. For instance, the leading constituent “Ozon” (Ozone) in
“Ozonlager” (Ozone layer) determines that the layer mentioned is the ozone layer. The word
“Ozon” is useful as a search term, since documents about ozone layers probably also contain the
separate word “Ozon”. Such documents might also contain other compounds that begin with
“Ozon” such as “Ozonhalt” (Ozone amount) and “Ozonh̊al” (Ozone hole), so finding these words
might also help improve the query.

By expanding a query with the leading constituent of a compound search word will effectively
increase the recall, and hopefully in such a way that the new documents that are found are related
to the concept expressed by the compound. And if we also expand the query with all words that
begin with the leading constituent, we will find new words that again, hopefully, are related as
well. But we will also find words that are not related to the concept at all, so there must be some
way of narrowing the query as well.

Our general approach in runs sicsSVtad and sicsSVtmd was to expand the queries with leading
constituent. These were added as search words while also keeping the original compound. Each
search word was then truncated, i.e. we found all other indexed words that had the search word
as prefix. All search words were truncated, not only the leading compounds. For instance, the
truncation of “Diamant” found “Diamantexport” (Diamond export), “Diamantföretag” (Diamond
corporation) and also “Diamantgruva” mentioned earlier.

We decided to do the compounds splitting at query time, so that we could elaborate with how
to select good constituents for improving the queries.

1By concept, we mean search term

2.1 Retrieval engine and model

The underlying retrieval engine we used is an experimental system developed at SICS. It currently
supports Boolean, Vector Space and structured queries. It is designed to handle a large amount
of documents and queries, using algorithms described in [8] and [1] to effectively manage large
amounts of data. The system is described in more detail in our CLEF paper [5] from last year.

The Swedish document collection was parsed and normalized using a lemmatizer, but we did
not use any compound splitting at indexing time. Also, we used a list of 285 stop words.

For scoring documents, we used pivoted cosine normalization, or Lnu in Smart notation [7].
We set the slope to 0.3 after some informal experiments, and set the pivot to the average number
of unique terms in a document, as suggested in [7].

2.2 Boolean combinations of truncated terms

We used two different approaches to query formulation. For the first run, sicsSVtad, we used
the selective compound splitting on the Title field only. In the second run, sicsSVtmd, we again
used the Title words, but also added some words from the Desc field (those with lowest document
frequency) so that there was a maximum of 5 words in the query. Each such base word was
then truncated, and we performed a ranked Boolean AND between the base words and a ranked
Boolean OR between the words found by truncating the base words. In the case where there were
less than 1000 documents in a result list, we appended the results of a standard vector space query
using all words from the Desc field.

To illustrate the Boolean combination procedure, let a, b and c be three query terms, and let
a1, . . . , an be the expanded words from the truncation of a (and b1, . . . , bm, c1, . . . , cr for b and
c). For each possible Boolean combination of the query terms, we constructed one query. In total
this makes 7 queries, displayed in Figure 1.

(a1 ∨ . . . ∨ an) ∧ (b1 ∨ . . . ∨ bm) ∧ (c1 ∨ . . . ∨ cr)
(a1 ∨ . . . ∨ an) ∧ (b1 ∨ . . . ∨ bm)
(a1 ∨ . . . ∨ an) ∧ (c1 ∨ . . . ∨ cr)
(b1 ∨ . . . ∨ bm) ∧ (c1 ∨ . . . ∨ cr)
(a1 ∨ . . . ∨ an)
(b1 ∨ . . . ∨ bm)
(c1 ∨ . . . ∨ cr)

Figure 1: The 7 possible Boolean combinations of three truncated query terms a, b and c

In general, the number of such Boolean query combinations is
∑k

i=1

(
k
i

)
, where k is the number

of terms in the query. This type of Boolean combination is sometimes called quorum level search
[6], although the standard way of performing the search is to include all combinations of the same
size in one and the same query, using the OR operator to combine them. This strategy was not
appropriate for this task, since then we would have normalized documents differently and would
not have been able to merge the result lists in a simple way.

Since each Boolean combination was a single query, we simply set the RSV for each document to
the sum of the RSV values from all queries in that combination. This has the desirable property
that documents are not only ranked according to the tf-idf model, but also to the number of
combinations of the search words that are spotted in the document. For instance, a document
where all search words are found would be at the top of the list, since that document would get
positive RSV values from all queries in the combination.

3 Other approaches

Since the Boolean combinations of truncated terms is designed to increase recall, it is important
to make sure that we do not add too much noise in this process. One way of doing this is to use

stylistic filtering of the retrieved documents to boost news items with animate agents.

3.1 Stylistic filtering to boost news items with animate agents

As the text corpus was composed of news service items with longer more textual pieces, short
one-paragraph or one-sentence passages, as well as tables of sports or stock results, a filter to
boost the rank of items more likely to be relevant to the textually oriented materials requested
for CLEF was designed. The basic assumption of the filter was that items more likely to be
relevant would contain more animate agents than others: texts with the personal agents present
and with descriptions of actions taken by people or organizations or other animate entities were
assumed to be of a higher information value than texts with completely impersonal and non-active
constructions.

The style filter was constructed in a multi-step process. First, a set of prototypical animate
agents was drawn up. The list used as a seed set can be seen in Table 1. Second, all verbs in
the corpus were tabulated by their occurrence with a subject from the seed set of animate agents.
Verbs which occurred at least once with one of the prototypically animate agents were noted to
be personal verbs - comprising a set of over 2200 verbs.

Third, for each textual item, the number of personal verbs was tabulated. This statistic was
used as an animacy score for the text item.

Fourth, the output from other retrieval runs was then reranked using the animacy score as a
key. The reranking was done in one pass through the list. If an item has a low animacy score,
operationalized as less than 75 per cent of the average animacy score of any text in the retrieved
set, and the item just below it has a higher animacy score, their position is swapped. This method
avoids large scale movement of items through the ranked list but shifts adjacent items from position
to position.

han he barn child
hon she ungdom youth
man man / impersonal “one” pojke boy
kvinna woman flicka girl

Table 1: Seed word set for the prototypical animate agents

Unfortunately, we could see no effect of the reranking in our results, and are currently inves-
tigating why this was the case.

3.2 Dimensionality Reduction by Random Indexing

Dimensionality reduction is often important in information retrieval tasks, since the dimensionality
of the search space induces constraints on the performance of the retrieval engine; very high-
dimensional data will require large amounts of memory and processing time, and will severely limit
the efficiency of the system. This is especially important in real-world settings, where the user
expects both accurate and, sometimes even more important, fast results. A common approach
to reduce the dimensionality of the data in information retrieval systems is by using various
forms of word filtering techniques, such as stop lists, frequency thresholding and morphological
normalization.

An alternative method for dimensionality reduction in the Vector Space Model (VSM) [6] is
to combine word filtering with the use of reduced representations for the vocabulary. Assuming
the standard definition of the VSM, where the dimensionality of the document vectors is given by
the size of the vocabulary, i.e. the number w of unique words in the data (normally after word
filtering), we can define a reduced representation as vectors of dimensionality d � w. One way of
producing such reduced representations is to use a random mapping method [4], where words are
represented by nearly orthogonal random vectors of dimensionality d � w, and where document
and query vectors are defined as the average (i.e. the vector sum) of the vectors of the words in

the document or query. The point of this methodology is that the resulting search space will be
significantly smaller than the original search space, while still containing approximately the same
information.

In one of our CLEF 2003 runs (sicsSVind), we used the Random Indexing approach [2], [3]
to assign nearly orthogonal sparse random vectors to each unique word in the data. The vectors,
which we call index vectors, were 1,000-dimensional with 6 randomly distributed non-zero elements
(three +1s and three −1s). We then produced 1,000-dimensional document and query vectors by
simply summing the index vectors of the words in the documents and the queries (after aggressive
word filtering2). The resulting 1,000-dimensional document and query vectors are much smaller
than the standard VSM vectors that will be 121,545-dimensional for the Swedish data (after word
filtering).

The retrieval was then performed by simply calculating the vector similarity between each
query vector and all the document vectors. The documents with highest similarity score were
ranked as most relevant to the query. As similarity measure, we used the cosine of the angles
between the vectors, given by:

dcos(x, y) =
~x · ~y

| ~x || ~y |
=

∑n
i=1 xiyi√∑n

i=1 x2
i

√∑n
i=1 y2

i

The results are somewhat disappointing; only 2 queries are above the median results, 3 are on
the median, and 48 below. It is not clear at this point whether the results are an artefact of the
dimensionality reduction, or if they depend on the simple and naive query formulation process
used in these runs. Future experiments will investigate this matter more fully.

4 Results

A summary of the results of the runs using the Boolean combination queries is displayed in Table 2.
The Table shows the number of queries that were above, on, or below the median result as well
as the number queries that obtained the maximum or minimum score.

Run Above On Below Max Min
sicsSVtad 14 10 29 6 5
sicsSVtmd 12 10 31 6 2

Table 2: Number of queries above, on or below the median score for each run. The number of
queries with max or min score is displayed in the last two columns

The overall results are encouraging but there are also many missed queries. Since we use a
maximum of 5 search terms for each query, the misses are easily attributed to the small amount
of query terms. However, we believe that it is interesting to evaluate what type of results that
can be achieved when using few query terms, since it is well known that many users (especially
search engine users) typically use only three or four words to express their query.

There is an interesting difference between the two runs; the number of queries above the median
result and the number of queries that obtained the lowest score. Recall that in sicsSVtad, only
terms from the Title field were used. When we added some terms from the Desc field in sicsSVtmd
we got fewer (3) queries that obtained lowest score but also fewer queries (2) above the median.

The fewer number of queries that got lowest score is due to the fact that we added more
search terms to the query in the sicsSVtmd. For instance, the average precision of query 165 was
improved from 0.3333 to 1.000. The query in sicsSVtad was “GOLDEN GLOBE” whereas in
sicsSVtmd it was expanded to “GOLDEN GLOBE KATEGORI DRAMA FILM”.

We noted that for the queries that were above median in sicsSVtad and then below median in
sicsSVtmd, the difference was very small in terms of average precision. For instance, the average
precision of query 147 was changed from 0.0673 to 0.0619, and the median was 0.0639.

2We used a stop list based on document frequencies together with ordinary word frequency thresholds (excluding
low (< 3 occurrences) and high (> 12000 occurrences) frequency words).

5 Discussion

For a compounding language such as Swedish, it is important to find methods that can effectively
manage compound words in information retrieval systems. The approach taken in this paper is to
look at how the leading constituent of a compound word can be used to expand the query. The
query terms were then truncated to increase recall. To strike a balance between high recall and
high precision, we used a Boolean quorum-level type of combination where documents were ranked
according to both the tf-idf factor but also according to how many of the Boolean combinations
that matched.

The Boolean combinations performed relatively well, taken into consideration that the queries
were very short. This was our first attempt to tackle the problem of using compound word splitting
for query expansion, and we will continue to pursue this line of research. What we would like to do
to next is to use co-occurrence statistics and perhaps also clustering methods to find words that
are related to the compound, so that we can have a more principled way of checking the relation
between the concept expressed by the constituent and that expressed by the compound.

Acknowledgements The work reported here is partially funded by the European Commis-
sion under contracts IST-2000-29452 (DUMAS) and IST-2000-25310 (CLARITY) which is hereby
gratefully acknowledged. We thank Tidningarnas Telegrambyr̊aAB, Stockholm, for providing us
with the Swedish text collection.

References

[1] M. J. Folk, B. Zoellick, and G. Riccardi. File Structures: An Object-Oriented Approach with
C++. Addison-Wesley, 3rd edition, 1998.

[2] P. Kanerva, J. Kristofersson, and A. Holst. Random indexing of text samples for latent semantic
analysis. In Proceedings of the 22nd Annual Conference of the Cognitive Science Society, page
1036. Erlbaum, 2000.

[3] J. Karlgren and M. Sahlgren. From words to understanding. In Y. Uesaka, P. Kanerva, and
H. Asoh, editors, Foundations of Real World Intelligence, pages 294–308. CSLI publications,
2001.

[4] S. Kaski. Dimensionality reduction by random mapping: Fast similarity computation for clus-
tering. In Proceedings of the IJCNN’98, International Joint Conference on Neural Networks,
pages 413–418. IEEE Service Center, 1998.

[5] M. Sahlgren, J. Karlgren, R. Cöster, and T. Jrvinen. Sics at clef 2002: Automatic query
expansion using random indexing. In The CLEF 2002 Workshop, September 19-20 2002.

[6] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

[7] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In Research
and Development in Information Retrieval, pages 21–29, 1996.

[8] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann Publishing, 2nd edition, 1999.

